

C H A P T E R 3

3

S
ound Input M

anager

Sound Input Manager 3

This chapter describes the Sound Input Manager, the part of the Macintosh system
software that controls the recording of sound through sound input devices. You can use
the Sound Input Manager to display and manage the sound recording dialog box. This
ensures that the user is presented with a consistent and standard user interface for sound
recording. You can, however, also use Sound Input Manager routines to record sound
without the sound recording dialog box or to interact directly with a sound input
device driver.

To use this chapter, you should already be familiar with the information in the chapter
“Introduction to Sound on the Macintosh” earlier in this book, and in particular with the
portions of that chapter that concern sound recording. That chapter explains how your
application can record either a sound resource or a sound file using the standard sound
recording dialog box. You need to read this chapter only if you need to interact with the
Sound Input Manager at a lower level than is allowed by the high-level functions
SndRecord and SndRecordToFile. For example, you need to read this chapter to
learn how to

■ record sound without using the sound recording dialog box

■ interact with a sound input device driver

■ write a sound input device driver

To use this chapter, you should also be familiar with the chapter “Sound Manager” in
this book, especially the portions of that chapter that describe

■ the format of sampled-sound data

■ the Macintosh Audio Compression and Expansion (MACE) routines

■ the structure of sound resources and sound files

■ the use of the Gestalt function to determine whether certain sound-related facilities
are available.

If you are writing a sound input device driver, you should already be familiar with
writing device drivers in general, as described in the book Inside Macintosh: Devices.

About the Sound Input Manager 3

The Sound Input Manager uses sound input device drivers to allow applications to
access sound input hardware in a device-independent way. A sound input device driver
is a standard Macintosh device driver used to interface to an audio digitizer or other
recording hardware. If you use the Sound Input Manager’s high-level routines, the
Sound Input Manager handles all communication with a sound input device driver for
you. If, however, you need to use the Sound Input Manager’s low-level routines, you
must open a sound input device driver yourself. You might also need to get information
about certain attributes of a sound input device. Sound input device drivers allow your
application to query a device about such attributes.
About the Sound Input Manager 3-3

C H A P T E R 3

Sound Input Manager

Sound Recording Without the Standard Interface 3
The Sound Input Manager provides your application with the ability to record and
digitally store sounds in a device-independent manner even if your application does not
use the standard sound recording interface. In cases where you need very fine control
over the recording process, you can call various low-level sound input routines.

Your application can obtain control over sound recording in two different ways. First, if
your application uses the sound recording dialog box, you can modify the dialog box’s
features by defining a custom filter procedure, as explained in detail in the chapter
“Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials. Second, if your
application needs to fine tune the sound recording process itself (or if your application
does not use the standard sound recording dialog box), then the application must use the
Sound Input Manager’s low-level routines.

In instances where you need to gain greater control over the recording process, you can
use a set of routines that manipulate the incoming sound data by using sound parameter
blocks. The parameter blocks contain information about the current recording device, the
length recorded, a routine to call on completion of the recording, and so forth. You can
call the SPBRecord function (or the SPBRecordToFile function) to begin a recording.
Then you can use the functions SPBPauseRecording, SPBResumeRecording, and
SPBStopRecording to control the recording. Note that you need to open a device
(using the SPBOpenDevice function) before you can record from it. On completion of
the recording, you should close the device (using the SPBCloseDevice function).

If you do record sounds using the Sound Input Manager’s low-level routines, you also
need to set up your own sound resource headers or sound files, because the Sound Input
Manager’s low-level routines return raw sampled-sound data to your application.
The Sound Input Manager provides two functions, SetupSndHeader and
SetupAIFFHeader, that allow you to set up your own sound resource headers or
sound files.

Interaction With Sound Input Devices 3
The Sound Input Manager provides routines that allow your application to request
information about a sound input device or to change a sound input device’s settings.
The types of information you can obtain about a sound input device include

■ the name, icon, and icon mask of the device driver

■ whether the device driver supports asynchronous recording

■ the device’s settings, such as the number of channels the device is to record, the
compression type, the number of bytes per sample at the current compression setting,
and the sample rate to be produced by the device

■ the range of compression types, sample rates, and sample sizes that the device
supports

You can also use the Sound Input Manager to change some of a sound input device’s
settings and to turn features on and off. For example, you can turn on and off automatic
gain control on some device drivers. Automatic gain control moderates sound recording
3-4 About the Sound Input Manager

C H A P T E R 3

Sound Input Manager

3

S
ound Input M

anager

to give a consistent signal level. Second, you can turn on and off the playthrough
feature, which allows the user to hear through the Macintosh speaker the sound being
recorded. Third, you can turn on and off VOX recording, or voice-activated recording,
which allows your application to record only when the amplitude of sound input
exceeds a certain level. You can use VOX recording either to prevent recording from
starting until sound is at least a certain amplitude or to automatically stop recording
when sound falls below a certain amplitude. This latter capability is called
VOX stopping.

An important feature of sound input devices is continuous recording. All sound input
devices that support asynchronous recording should support continuous recording as
well. Continuous recording allows your application to make several consecutive calls to
the SPBRecord function without losing data between calls. For example, you might
need to record a lengthy sound to disk but not be able to fit the entire sound into RAM.
Thus, it’s important to be able to save a buffer of data to disk while the sound input
device driver continues to collect recorded data. The Sound Input Manager’s
SndRecordToFile function relies on continuous recording.

To get information about a device or to turn features on and off, you can use the
SPBGetDeviceInfo and SPBSetDeviceInfo functions. These functions allow you to
use sound input device information selectors to specify what type of information you
need to know about the device or what settings you wish to change.

Sound Input Device Drivers 3
The Sound Input Manager also provides several routines intended for use only by sound
input device drivers. Sound input device drivers need to register themselves with the
Sound Input Manager by calling the SPBSignInDevice function. This makes that
device visible in the Sound In control panel for possible selection as the current input
device. You can remove a device from that panel by calling the SPBSignOutDevice
function.

For Macintosh computers with built-in sound recording hardware, the system software
includes a sound input device driver. This driver automatically calls SPBSignInDevice
when the computer starts up. If you are creating a sound input device driver for some
other sound recording hardware, your device driver must register itself at startup time.
Once your driver is registered, it must respond to Status, Control, and Read calls issued
by the Sound Input Manager. The Sound Input Manager issues Status calls to get
information about a device, Control calls to set device settings, and Read calls to
initiate recording.

Using the Sound Input Manager 3

You can use the Sound Input Manager to record sounds with the sound recording dialog
box, to record sounds directly from a device, to get and set information about a sound
input device, and to register your sound input device driver so that it can respond to
Using the Sound Input Manager 3-5

C H A P T E R 3

Sound Input Manager

Read, Status, and Control calls. This section does not explain how to record sounds using
the sound recording dialog box; for information on that, see the chapter “Introduction to
Sound on the Macintosh” in this book.

Recording Sounds Directly From a Device 3
The Sound Input Manager provides a number of routines that you can use for low-level
control over the recording process (such as the ability to intercept sound input data at
interrupt time). You can open a sound input device and read data from it by calling these
low-level Sound Input Manager routines. Several of those routines access information
through a sound input parameter block, which is defined by the SPB data type:

TYPE SPB =

RECORD

inRefNum: LongInt; {reference number of input device}

count: LongInt; {number of bytes to record}

milliseconds: LongInt; {number of milliseconds to record}

bufferLength: LongInt; {length of buffer to record into}

bufferPtr: Ptr; {pointer to buffer to record into}

completionRoutine: ProcPtr; {pointer to a completion routine}

interruptRoutine: ProcPtr; {pointer to an interrupt routine}

userLong: LongInt; {for application's use}

error: OSErr; {error returned after recording}

unused1: LongInt; {reserved}

END;

The inRefNum field indicates the reference number of the sound input device from
which the recording is to occur. You can obtain the reference number of the default
sound input device by using the SPBOpenDevice function.

The count, milliseconds, and bufferLength fields jointly determine the length of
recording. The count field indicates the number of bytes to record; the milliseconds
field indicates the number of milliseconds to record; and the bufferLength field
indicates the length in bytes of the buffer into which the recorded sound data is to be
placed. If the count and milliseconds fields are not equivalent, then the field which
specifies the longer recording time is used. If the buffer specified by the bufferLength
field is shorter than this recording time, then the recording time is truncated so that the
recorded data can fit into the buffer specified by the bufferPtr field. The Sound
Input Manager provides two functions, SPBMilliSecondsToBytes and
SPBBytesToMilliSeconds, that allow you to convert between byte and
millisecond values.

After recording finishes, the count and milliseconds fields indicate the number of
bytes and milliseconds actually recorded.

The completionRoutine and interruptRoutine fields allow your application
to define a sound input completion routine and a sound input interrupt routine,
respectively. More information on these routines is provided later in this section.
3-6 Using the Sound Input Manager

C H A P T E R 3

Sound Input Manager

3

S
ound Input M

anager

The userLong field contains a long integer that is provided for your application’s own
use. You can use this field, for instance, to pass a handle to an application-defined
structure to the sound input completion or interrupt routine. Or, you can use this field
to store the value of your application’s A5 register, so that your sound input completion
or interrupt routine can access your application’s global variables. For more information
on preserving the value of the A5 register, see the discussion of the SetA5 and
SetCurrentA5 functions in the chapter “Memory Management Utilities” in
Inside Macintosh: Memory.

The error field describes any errors that occur during the recording. This field contains
a value greater than 0 while recording unless an error occurs, in which case it contains a
value less than 0 that indicates an operating system error. Your application can poll this
field to check on the status of an asynchronous recording. If recording terminates
without an error, this field contains 0.

Listing 3-1 shows how to set up a sound parameter block and record synchronously
using the SPBRecord function. This procedure takes one parameter, a handle to a block
of memory in which the recorded sound data is to be stored. It is assumed that the
block of memory is large enough to hold the sound to be recorded.

Listing 3-1 Recording directly from a sound input device

PROCEDURE MyRecordSnd (mySndH: Handle);

CONST

kAsync = TRUE;

kMiddleC = 60;

VAR

mySPB: SPB; {a sound input parameter block}

myInRefNum: LongInt; {device reference number}

myBuffSize: LongInt; {size of buffer to record into}

myHeadrLen: Integer; {length of sound header}

myNumChans: Integer; {number of channels}

mySampSize: Integer; {size of a sample}

mySampRate: Fixed; {sample rate}

myCompType: OSType; {compression type}

myErr: OSErr;

BEGIN

{Open the default input device for reading and writing.}

myErr := SPBOpenDevice('', siWritePermission, myInRefNum);

IF myErr = noErr THEN

BEGIN

{Get current settings of sound input device.}

MyGetDeviceSettings(myInRefNum, myNumChans, mySampRate,

mySampSize, myCompType);
Using the Sound Input Manager 3-7

C H A P T E R 3

Sound Input Manager
{Set up handle to contain the 'snd ' resource header.}

myErr := SetupSndHeader(mySndH, myNumChans, mySampRate,mySampSize,

myCompType, kMiddleC, 0, myHeadrLen);

{Leave room in buffer for the sound resource header.}

myBuffSize := GetHandleSize(mySndH) - myHeadrLen;

{Lock down the sound handle until the recording is over.}

HLockHi(mySndH);

{Set up the sound input parameter block.}

WITH mySPB do

BEGIN

inRefNum := myInRefNum; {input device reference number}

count := myBuffSize; {number of bytes to record}

milliseconds := 0; {no milliseconds}

bufferLength := myBuffSize; {length of buffer}

bufferPtr := Ptr(ORD4(mySndH^) + myHeadrLen);

{put data after 'snd ' header}

completionRoutine := NIL; {no completion routine}

interruptRoutine := NIL; {no interrupt routine}

userLong := 0; {no user data}

error := noErr; {clear error field}

unused1 := 0; {clear reserved field}

END;

{Record synchronously through the open sound input device.}

myErr := SPBRecord(@mySPB, NOT kAsync);

HUnlock(mySndH); {unlock the handle}

{Indicate the number of bytes actually recorded.}

myErr := SetupSndHeader(mySndH, myNumChans, mySampRate, mySampSize,

myCompType, kMiddleC, mySPB.count,

myHeadrLen);

{Close the input device.}

myErr := SPBCloseDevice(myInRefNum);

END;

END;
3-8 Using the Sound Input Manager

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
The MyRecordSnd procedure defined in Listing 3-1 opens the default sound input
device by using the SPBOpenDevice function. You can specify one of two values for the
permission parameter of SPBOpenDevice:

CONST

siReadPermission = 0; {open device for reading}

siWritePermission = 1; {open device for reading/writing}

You must open a device for both reading and writing if you intend to use the
SPBSetDeviceInfo function or the SPBRecord function. If SPBOpenDevice
successfully opens the specified device for reading and writing, MyRecordSnd calls
the MyGetDeviceSettings procedure (defined in Listing 3-3 on page 3-12). That
procedure calls the Sound Input Manager function SPBGetDeviceInfo (explained in
“Getting and Setting Sound Input Device Information” on page 3-10) to determine the
current number of channels, sample rate, sample size, and compression type in use by
the device.

This information is then passed to the SetupSndHeader function, which sets up the
handle mySndH with a sound header describing the current device settings. After doing
this, MyRecordSnd sets up a sound input parameter block and calls the SPBRecord
function to record a sound. Note that the handle must be locked during the recording
because the parameter block contains a pointer to the input buffer. After the recording is
done, MyRecordSnd once again calls the SetupSndHeader function to fill in the actual
number of bytes recorded.

If the MyRecordSnd procedure defined in Listing 3-1 executes successfully, the handle
mySndH points to a resource of type 'snd '. Your application can then synchronously
play the recorded sound, for example, by executing the following line of code:

myErr := SndPlay(NIL, mySndH, FALSE);

For more information on playing sounds your application has recorded, see the chapter
“Sound Manager” in this book.

Defining a Sound Input Completion Routine 3

The completionRoutine field of the sound parameter block record contains the
address of a completion routine that is executed when the recording terminates
normally, either by reaching its prescribed time or size limits or by the application
calling the SPBStopRecording function. A completion routine should have the
following format:

PROCEDURE MySICompletionRoutine (inParamPtr: SPBPtr);

The completion routine is passed the address of the sound input parameter block that
was passed to the SPBRecord function. You can gain access to other data structures in
your application by passing an address in the userLong field of the parameter block.
After the completion routine executes, your application should check the error field of
the sound input parameter block to see if an error code was returned.
Using the Sound Input Manager 3-9

C H A P T E R 3

Sound Input Manager
Your sound input interrupt routine is always called at interrupt time, so it should not call
routines that might allocate or move memory or assume that A5 is set up. For more
information on sound input interrupt routines, see “Sound Input Interrupt Routines”
beginning on page 3-55.

Defining a Sound Input Interrupt Routine 3

The interruptRoutine field of the sound input parameter block contains the address
of a routine that executes when the internal buffers of an asynchronous recording device
are filled. The internal buffers contain raw sound samples taken directly from the input
device. The interrupt routine can modify the samples in the buffer in any way it requires.
The processed samples are then written to the application buffer. If compression is
enabled, the modified data is compressed after your interrupt routine operates on the
samples and before the samples are written to the application buffer.

Your sound input interrupt routine is always called at interrupt time, so it should not call
routines that might allocate or move memory or assume that A5 is set up. For more
information on sound input interrupt routines, see “Sound Input Interrupt Routines”
beginning on page 3-55.

Getting and Setting Sound Input Device Information 3
You can get information about a specific sound input device and alter a sound
input device’s settings by calling the functions SPBGetDeviceInfo and
SPBSetDeviceInfo. These functions accept sound input device information selectors
that determine which information you need or want to change. The selectors currently
available are defined by constants of type OSType.

Here is a list of the selectors that all sound input device drivers must support. For
complete details on all the selectors described in this section, see “Sound Input Device
Information Selectors” beginning on page 3-18.

CONST

siAsync = 'asyn'; {asynchronous capability}

siChannelAvailable = 'chav'; {number of channels available}

siCompressionAvailable = 'cmav'; {compression types available}

siCompressionFactor = 'cmfa'; {current compression factor}

siCompressionType = 'comp'; {compression type}

siContinuous = 'cont'; {continuous recording}

siDeviceBufferInfo = 'dbin'; {size of interrupt buffer}

siDeviceConnected = 'dcon'; {input device connection status}

siDeviceIcon = 'icon'; {input device icon}

siDeviceName = 'name'; {input device name}

siLevelMeterOnOff = 'lmet'; {level meter state}

siNumberChannels = 'chan'; {current number of channels}

siRecordingQuality = 'qual'; {recording quality}

siSampleRate = 'srat'; {current sample rate}
3-10 Using the Sound Input Manager

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
siSampleRateAvailable = 'srav'; {sample rates available}

siSampleSizeAvailable = 'ssav'; {sample sizes available}

siSampleSize = 'ssiz'; {current sample size}

siTwosComplementOnOff = 'twos'; {two's complement state}

The Sound Input Manager defines several selectors that specifically help it interact with
sound input device drivers. Your application should not use any of these selectors, but if
you are implementing a sound input device driver, you need to support these selectors.
They are:

CONST

siCloseDriver = 'clos'; {release driver}

siInitializeDriver = 'init'; {initialize driver}

siPauseRecording = 'paus'; {pause recording}

siUserInterruptProc = 'user'; {set sound input interrupt routine}

Finally, there are a number of sound input device information selectors that sound input
device drivers can optionally support. If you are writing an application, you can use
these selectors to interact with a sound input device driver, but you should be aware that
some drivers might not support all of them. To determine if a driver supports one of
these selectors, you can use the SPBGetDeviceInfo function. If no errors are returned,
then the selector is supported when using the SPBGetDeviceInfo and the
SPBSetDeviceInfo functions.

CONST

siActiveChannels = 'chac'; {channels active}

siActiveLevels = 'lmac'; {levels active}

siAGCOnOff = 'agc '; {automatic gain control state}

siCompressionHeader = 'cmhd'; {get compression header}

siCompressionNames = 'cnam'; {return compression type names}

siInputGain = 'gain'; {input gain level}

siInputSource = 'sour'; {input source selector}

siInputSourceNames = 'snam'; {input source names}

siOptionsDialog = 'optd'; {display options dialog box}

siPlayThruOnOff = 'plth'; {play-through state}

siStereoInputGain = 'sgai'; {stereo input gain level}

siVoxRecordInfo = 'voxr'; {VOX record parameters}

siVoxStopInfo = 'voxs'; {VOX stop parameters}

The format of the relevant data (either returned by the Sound Input Manager or
provided by you) depends on the selector you provide. For example, if you want
to determine the name of some sound input device, you can pass to the
SPBGetDeviceInfo function the siDeviceName selector and a pointer to a
256-byte buffer. If the SPBGetDeviceInfo function can get the information, it fills
that buffer with the name of the specified sound input device. Listing 3-2 illustrates
one way you can determine the name of a particular sound input device.
Using the Sound Input Manager 3-11

C H A P T E R 3

Sound Input Manager
Listing 3-2 Determining the name of a sound input device

FUNCTION MyGetDeviceName (myRefNum: LongInt; VAR dName: Str255): OSErr;

BEGIN

MyGetDeviceName := SPBGetDeviceInfo(myRefNum, siDeviceName, Ptr(@dName));

END;

Note
You can get the name and icon of all connected sound input devices
without using sound input information selectors by using the
SPBGetIndexedDevice function, which is described on page 3-49. ◆

Some selectors cause the SPBGetDeviceInfo function to return data of other types.
Listing 3-3 illustrates how to determine the number of channels, the sample rate, the
sample size, and the compression type currently in use by a given sound input device.
(The procedure defined in Listing 3-3 is called in the procedure defined in Listing 3-1.)

Listing 3-3 Determining some sound input device settings

PROCEDURE MyGetDeviceSettings (myRefNum: LongInt;

VAR numChannels: Integer;

VAR sampleRate: Fixed;

VAR sampleSize: Integer;

VAR compressionType: OSType);

VAR

myErr: OSErr;

BEGIN

{Get number of active channels.}

myErr := SPBGetDeviceInfo (myRefNum, siNumberChannels, Ptr(@numChannels));

{Get sample rate.}

myErr := SPBGetDeviceInfo(myRefNum, siSampleRate, Ptr(@sampleRate));

{Get sample size.}

myErr := SPBGetDeviceInfo(myRefNum, siSampleSize, Ptr(@sampleSize));

{Get compression type.}

myErr := SPBGetDeviceInfo(myRefNum, siCompressionType,

Ptr(@compressionType));

END;

All of the selectors that return a handle allocate the memory for that handle in the
current heap zone; you are responsible for disposing of that handle when you are done
with it, and you should verify that there is enough memory for such a handle before
calling the selector.
3-12 Using the Sound Input Manager

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
Writing a Sound Input Device Driver 3
This section describes what you need to do when you do write a sound input device
driver. If you write a sound input device driver, you should set the drvrFlags field of
the sound input device driver’s header to indicate that the driver can handle Status,
Control, and Read requests. The driver header should also indicate that the driver needs
to be locked.

IMPORTANT

You don’t need to write a device driver to use sound input
capabilities. ▲

After you create a device driver, you must write an extension that installs it. Before
your extension installs the driver, it should pass the Gestalt function the
gestaltSoundAttr attribute selector and inspect the gestaltSoundIOMgrPresent
bit to determine if the sound input routines are available. If so, the extension should
install the sound input device driver into the unit table just as any other driver must
be installed.

After installing the driver, the extension must then make an Open request to the driver,
so that the driver can perform any necessary initialization. In particular, the driver might
set the dCtlStorage field of the device control entry to a pointer or a handle to a block
in the system heap containing all of the variables that it might need. Finally, the device
driver signs into the Sound Input Manager by calling the SPBSignInDevice function.

Once signed in, a driver can receive Status, Control, and Read requests from the
Sound Input Manager. On entry, the A0 register contains a pointer to a standard
Device Manager parameter block, and the A1 register contains a pointer to the
device control entry. For more information on using registers in a device driver,
see Inside Macintosh: Devices.

Responding to Status and Control Requests 3

The Sound Input Manager supports sound input device information selectors by
sending your device driver Status and Control requests. It uses Status requests to get
information about your device; it uses Control requests to change settings of your sound
input device.

The behavior of your sound input device driver in response to Status and Control
requests depends on the value of the csCode field of the Device Manager control
parameter block. If the csCode field contains 2, then the sound input information
selector is passed in the first 4 bytes of the csParam field of the Device Manager control
parameter block. For Status requests, the next 18 bytes can be used for your device driver
to pass information back to an application. For Control requests, these 18 bytes are used
by an application to pass data to your sound input device driver.

Figure 3-1 shows the contents of the csParam field of the Device Manager control
parameter block for a sample Status request. The first four bytes of the csParam field
contain the input selector 'srav', which is a request for the available sample rates. The
next four bytes of the field contain a pointer to an application-supplied buffer in which
to return the data (the number of rates available) from the Status request.
Using the Sound Input Manager 3-13

C H A P T E R 3

Sound Input Manager
Figure 3-1 An example of the csParam field for a Status request

On exit from the Status request, your sound input device driver can respond in one of
two ways. If you are returning fewer than 18 bytes of data, your device driver should
specify in the first 4 bytes of the csParam field of the Device Manager control parameter
block the number of bytes of data being returned and place the data in the following 18
bytes. In this case, the Sound Input Manager copies the data to the application-supplied
buffer identified in Figure 3-1. If you are returning more than 18 bytes of data, your
device driver should copy the data to the application-supplied buffer. In this case,
your device driver needs to place a zero in the first 4 bytes of the csParam field to
indicate to the Sound Input Manager that the data has already been copied to the
application-supplied buffer.

Figure 3-2 shows the contents of the csParam field of the Device Manager control
parameter block for a sample Control request. The first four bytes of the csParam field
contain the input selector 'srat' which determines the sample rate for the sound input
device. The next eighteen bytes contain the data, which in this example is the sample rate
to set for your sound input device. This is a Fixed value of four bytes in length.

Figure 3-2 An example of the csParam field for a Control request

Bytes

'srav' 4

csParam field

Pointer to application-supplied buffer 4

Bytes

'srat' 4

csParam field

0x56EE8BA3 4
3-14 Using the Sound Input Manager

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
Note
Some sound input information selectors require your sound input
device driver to allocate a handle in which to store information. In this
case, your driver should attempt to allocate an appropriately sized
handle in the current heap zone. If allocation fails, your driver should
return the appropriate Memory Manager result code. ◆

Your sound input device driver must respond to a core set of selectors, but the remaining
selectors defined by Apple are optional. Your device driver might also define private
selectors to support proprietary features. (Selectors containing all lowercase letters,
however, are reserved by Apple.) The section “Getting and Setting Sound Input Device
Information” beginning on page 3-10 lists the core selectors and other selectors that have
been defined.

If the csCode field contains 1 (which can occur only for Control requests), the Sound
Input Manager is attempting to stop asynchronous recording; that is, it is issuing a
KillIO request. In response to this, the driver should stop copying data to the
application buffer, update the ioActCount field of the request parameter block, and
return via an RTS instruction.

Before exiting after a Status and Control request, your sound input device driver should
fill the D0 register with the appropriate result code or noErr. To exit, your sound input
device driver should check whether the Status and Control request was executed
immediately or was queued.

Note
In current versions of system software, the Sound Input Manager always
issues Status and Control requests immediately. This might change in
future versions of system software. ◆

Your sound input device driver can determine whether a request is issued immediately
by checking the noQueueBit in the ioTrap field of the Device Manager control
parameter block. If the request was made immediately, the Control routine should return
via an RTS instruction; if the request was queued, the Control routine should jump to the
Device Manager’s IODone function via the global jump vector JIODone. You need to
make sure that the A0 and A1 registers are set the same as they are on entry to the device
driver or JIODone will fail.

Responding to Read Requests 3

When a sound input device receives a Read request, it must start recording and saving
recorded data into the buffer specified by the ioBuffer field of the request parameter
block. If that field is NIL, the driver should record but not save the data. During a Read
request, your sound input device driver can access the sound parameter block that
initiated recording through the ioMisc field of the request parameter block.

If a previous Control request has assigned a sound input interrupt routine to the device
driver and your driver records asynchronously, then the driver must call the routine
each time its internal buffer becomes filled, setting up registers as described in “Defining
a Sound Input Interrupt Routine” on page 3-10. The buffer size that your device driver
specifies in the D1 register should indicate how much your device records during every
Using the Sound Input Manager 3-15

C H A P T E R 3

Sound Input Manager
interrupt. For example, a sound input device driver that uses the serial port might use a
buffer as small as 3 bytes. For the built-in sound input port on the Macintosh LC and
other Macintosh models, the buffer is 512 bytes long.

Your device driver should update the ioActCount field of the request parameter block
with the actual number of bytes of sampled-sound data recorded. This allows the Sound
Input Manager to monitor the activity of your device driver. Whether your device driver
operates synchronously or asynchronously, it should complete recording by jumping to
the Device Manager’s IODone function via the global jump vector JIODone. You need
to set the D0 register to the appropriate result code before jumping to the Device
Manager’s IODone function.

Supporting Stereo Recording 3

Many sound input devices support recording stereo sounds (that is, sounds from two or
more channels). If you are writing a device driver for a stereo device, you need to make
sure that you support the siNumberChannels, siActiveChannels, and
siActiveLevels selectors.

The siNumberChannels selector controls the number of sound input channels and
thereby determines the format of the data stream your device driver produces. If the
number of channels is 1, the driver should produce monophonic data in response to a
Read request. If the number of channels is 2, the driver should produce interleaved
stereo data in response to a Read request.

The siActiveChannels selector controls which of the available input channels are
used for recording. The active channels are specified using a bitmap value. For example,
the value $01 indicates that the first channel (the left channel) is to be used. The value
$02 indicates that the second channel (the right channel) is to be used.

The siNumberChannels and siActiveChannels selectors together determine the
exact format of the output data stream. If the current number of channels is 1 and the
current active channel bitmap is $01, the driver should produce a stream of monophonic
data containing samples only from the left input channel. If the current number of
channels is 1 and the current active channel bitmap is $02, the driver should produce a
stream of monophonic data containing samples only from the right input channel. If the
current number of channels is 1 and the current active channel bitmap is $03, the driver
should mix the right and left channels to produce a stream of monophonic data. If the
current number of channels is 2 and the current active channel bitmap is $03, the driver
should produce a stream of interleaved samples from the left and right input channels.

Note
If the siActiveChannels selector is never passed to a sound input
device driver, it’s recommended that the active channel default bitmap
for both monophonic and stereo recording should be $03. When the
active channel bitmap conflicts with the number of channels (for
example, there are two channels but the active channel bitmap is $01),
you should use the default value of $03. ◆
3-16 Using the Sound Input Manager

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
Supporting Continuous Recording 3

If your sound input device driver supports continuous recording, it must do more than
respond to Status, Control, and Read requests. It must also, if continuous recording is on,
begin recording into an internal ring buffer as soon as a Read request completes. The
buffer should be made large enough so that the sound input device driver can support
successive requests to the SPBRecord function in most circumstances; however, if your
driver exhausts the internal buffer, your driver should begin recording again at the start
of the buffer.

When the sound input device driver receives a subsequent Read request, it should
record to the application’s buffer first all of the data in the internal ring buffer and then
as much fresh data as it can record during one interrupt.

If a Read terminates due to a KillIO request, your sound input device driver does not
need to continue recording samples to the internal ring buffer until after the next
uninterrupted Read request.

Sound Input Manager Reference 3

This section describes the constants, data structure, and the routines provided by the
Sound Input Manager.

Constants 3
This section describes the constants you can use with the SPBSetDeviceInfo and
SPBGetDeviceInfo functions to set or get device information. It also lists the Gestalt
function sound attributes selector and the returned bit numbers that are relevant to the
Sound Input Manager. All other constants defined by the Sound Input Manager are
described at the appropriate location in this chapter. (For example, the constants that you
can use to specify sound recording qualities are described in connection with the
SndRecord function beginning on page 3-28.)

Gestalt Selector and Response Bits 3

You can pass the gestaltSoundAttr selector to the Gestalt function to determine
information about the sound input capabilities of a Macintosh computer.

CONST

gestaltSoundAttr = 'snd '; {sound attributes selector}

The Gestalt function returns information by setting or clearing bits in the response
parameter. The bits relevant to the Sound Input Manager are defined by constants:
Sound Input Manager Reference 3-17

C H A P T E R 3

Sound Input Manager
CONST

gestaltSoundIOMgrPresent = 3; {sound input routines available}

gestaltBuiltInSoundInput = 4; {built-in input hw available}

gestaltHasSoundInputDevice = 5; {sound input device available}

gestaltPlayAndRecord = 6; {built-in hw can play while recording}

gestalt16BitSoundIO = 7; {built-in hw can handle 16-bit data}

gestaltStereoInput = 8; {built-in hw can record stereo sounds}

gestaltLineLevelInput = 9; {built-in input hw needs line level}

Constant descriptions

gestaltSoundIOMgrPresent
Set if the Sound Input Manager is available.

gestaltBuiltInSoundInput
Set if a built-in sound input device is available.

gestaltHasSoundInputDevice
Set if a sound input device is available. This device can be either
built-in or external.

gestaltPlayAndRecord
Set if the built-in sound hardware is able to play and record sounds
simultaneously. If this bit is clear, the built-in sound hardware can
either play or record, but not do both at once. This bit is valid only if
the gestaltBuiltInSoundInput bit is set, and it applies only to
any built-in sound input and output hardware.

gestalt16BitSoundIO
Set if the built-in sound hardware is able to play and record 16-bit
samples. This indicates that built-in hardware necessary to handle
16-bit data is available.

gestaltStereoInput
Set if the built-in sound hardware can record stereo sounds.

gestaltLineLevelInput
Set if the built-in sound input port requires line level input.

Note
For complete information about the Gestalt function, see the chapter
“Gestalt Manager” in Inside Macintosh: Operating System Utilities. ◆

Sound Input Device Information Selectors 3

You can call the SPBSetDeviceInfo and SPBGetDeviceInfo functions to set or
get information about a sound input device. You pass each of those functions a sound
input device information selector in the infoType parameter to specify the type
of information you need. The available device information selectors are defined
by constants.
3-18 Sound Input Manager Reference

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
IMPORTANT

Some of these selectors are intended for use only by the Sound Input
Manager and other parts of the system software that need to interact
directly with sound input device drivers. (For example, the Sound Input
Manager sends the siCloseDriver selector to a sound input device
driver when it is closing the device.) In general, applications should not
use these reserved selectors. ▲

CONST

siActiveChannels = 'chac'; {channels active}

siActiveLevels = 'lmac'; {levels active}

siAGCOnOff = 'agc '; {automatic gain control state}

siAsync = 'asyn'; {asynchronous capability}

siChannelAvailable = 'chav'; {number of channels available}

siCloseDriver = 'clos'; {reserved for internal use only}

siCompressionAvailable = 'cmav'; {compression types available}

siCompressionFactor = 'cmfa'; {current compression factor}

siCompressionHeader = 'cmhd'; {return compression header}

siCompressionNames = 'cnam'; {return compression type names}

siCompressionType = 'comp'; {current compression type}

siContinuous = 'cont'; {continuous recording}

siDeviceBufferInfo = 'dbin'; {size of interrupt buffer}

siDeviceConnected = 'dcon'; {input device connection status}

siDeviceIcon = 'icon'; {input device icon}

siDeviceName = 'name'; {input device name}

siInitializeDriver = 'init'; {reserved for internal use only}

siInputGain = 'gain'; {input gain level}

siInputSource = 'sour'; {input source selector}

siInputSourceNames = 'snam'; {input source names}

siLevelMeterOnOff = 'lmet'; {level meter state}

siNumberChannels = 'chan'; {current number of channels}

siOptionsDialog = 'optd'; {display options dialog box}

siPauseRecording = 'paus'; {reserved for internal use only}

siPlayThruOnOff = 'plth'; {play-through state}

siRecordingQuality = 'qual'; {recording quality}

siSampleRate = 'srat'; {current sample rate}

siSampleRateAvailable = 'srav'; {sample rates available}

siSampleSize = 'ssiz'; {current sample size}

siSampleSizeAvailable = 'ssav'; {sample sizes available}

siStereoInputGain = 'sgai'; {stereo input gain level}

siTwosComplementOnOff = 'twos'; {two's complement state}

siUserInterruptProc = 'user'; {reserved for internal use only}

siVoxRecordInfo = 'voxr'; {VOX record parameters}

siVoxStopInfo = 'voxs'; {VOX stop parameters}
Sound Input Manager Reference 3-19

C H A P T E R 3

Sound Input Manager
Constant descriptions

siActiveChannels
Get or set the channels to record from. When setting the active
channels, the data passed in is a long integer that is interpreted as a
bitmap describing the channels to record from. For example, if bit 0
is set, then the first channel is made active. The samples for each
active channel are interleaved in the application’s buffer. When
reading the active channels, the data returned is a bitmap of the
active channels.

siActiveLevels
Get the current signal level for each active channel. The infoData
parameter points to an array of integers, the size of which depends
on the number of active channels. You can determine how many
channels are active by calling SPBGetDeviceInfo with the
siNumberChannels selector.

siAGCOnOff Get or set the current state of the automatic gain control feature. The
infoData parameter points to an integer, which is 0 if gain control
is off and 1 if it is on.

siAsync Determine whether the driver supports asynchronous recording
functions. The infoData parameter points to an integer, which is
0 if the driver supports synchronous calls only and 1 otherwise.
Some sound input drivers do not support asynchronous recording
at all, and some might support asynchronous recording only on
certain hardware configurations.

siChannelAvailable
Get the maximum number of channels this device can record. The
infoData parameter points to an integer, which is the number of
available channels.

siCloseDriver The Sound Input Manager sends this selector when it closes a
device previously opened with write permission. The sound input
device driver should stop any recording in progress, deallocate the
input hardware, and initialize local variables to default settings.
Your application should never issue this selector directly. The
infoData parameter is unused with this selector.

siCompressionAvailable
Get the number and list of compression types this device can
produce. The infoData parameter points to an integer, which is
the number of compression types, followed by a handle. The handle
references a list of compression types, each of type OSType.

siCompressionFactor
Get the compression factor of the current compression type. For
example, the compression factor for MACE 3:1 compression is 3. If a
sound input device driver supports only compression type 'NONE',
the returned compression type is 1. The infoData parameter
points to an integer, which is the compression factor.

siCompressionHeader
Get a compressed sound header for the current recording settings.
Your application passes in a pointer to a compressed sound header
3-20 Sound Input Manager Reference

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
and the driver fills it in. Before calling SPBGetDeviceInfo with
this selector, you should set the numFrames field of the compressed
sound header to the number of bytes in the sound. When
SPBGetDeviceInfo returns successfully, that field contains the
number of sample frames in the sound. This selector is needed
only by drivers that use compression types that are not directly
supported by Apple. If you call this selector after recording a sound,
your application can get enough information about the sound to
play it or save it in a file. The infoData parameter points to a
compressed sound header.

siCompressionNames
Get a list of names of the compression types supported by the
sound input device. In response to a Status call, a sound input
device driver returns, in the location specified by the infoData
parameter, a handle to a block of memory that contains the names
of all compression types supported by the driver. It is the driver’s
responsibility to allocate that block of memory, but it should not
release it. The software issuing this selector is responsible for
disposing of the handle. As a result, a device driver must detach
any resource handles (by calling DetachResource) before
returning them to the caller. The data in the handle has the same
format as an 'STR#' resource: a two-byte count of the strings in the
resource, followed by the strings themselves. The strings should
occur in the same order as the compression types returned by the
siCompressionAvailable selector. If the driver does not
support compression, it returns siUnknownInfoType. If the driver
supports compression but for some reason not all compression
types are currently selectable, it returns a list of all available
compression types.

siCompressionType
Get or set the compression type. Some devices allow the incoming
samples to be compressed before being placed in your application’s
input buffer. The infoData parameter points to a buffer of type
OSType, which is the compression type.

siContinuous Get or set the state of continuous recording from this device. If
recording is being turned off, the driver stops recording samples to
its internal buffer. Only sound input device drivers that support
asynchronous recording support continuous recording. The
infoData parameter points to an integer, which is the state of
continuous recording (0 is off, 1 is on).

siDeviceBufferInfo
Get the size of the device’s internal buffer. This information can be
useful when you want to modify sound input data at interrupt time.
Note, however, that if a driver is recording continuously, then the
size of the buffer passed to your sound input interrupt routine
might be greater than the size this selector returns because data
recorded between calls to SPBRecord as well as recorded during
calls to SPBRecord will be sent to your interrupt routine. The
infoData parameter points to a long integer, which is the size of
the device’s internal buffer.
Sound Input Manager Reference 3-21

C H A P T E R 3

Sound Input Manager
siDeviceConnected
Get the state of the device connection. The infoData parameter
points to an integer, which is one of the following constants:

CONST

siDeviceIsConnected = 1;

siDeviceNotConnected = 0;

siDontKnowIfConnected = -1;

The siDeviceIsConnected constant indicates that the device is
connected and ready. The siDeviceNotConnected constant
indicates that the device is not connected. The
siDontKnowIfConnected constant indicates that the Sound
Input Manager cannot determine whether the device is connected.

siDeviceIcon Get the device’s icon and icon mask. In response to a Status call, a
sound input device driver should return, in the location specified
by the infoData parameter, a handle to a block of memory that
contains the icon and its mask in the format of an 'ICN#' resource.
It is the driver’s responsibility to allocate that block of memory, but
it should not releasee it. The software issuing this selector is
responsible for disposing of the handle. As a result, a device driver
should detach any resource handles (by calling DetachResource)
before returning them to the caller.

siDeviceName Get the name of the sound input device. Your application must pass
a pointer to a buffer that will be filled in with the device’s name.
The buffer needs to be large enough to hold a Str255 data type.

siInitializeDriver
The Sound Input Manager sends this selector when it opens a
sound input device with write permission. The sound input device
driver initializes local variables and prepares to start recording. If
possible, the driver initializes the device to a sampling rate of
22 kHz, a sample size of 8 bits, mono recording, no compression,
automatic gain control on, and all other features off. Your
application should never issue this selector directly. The infoData
parameter is unused with this selector.

siInputGain Get and set the current sound input gain. If the available hardware
allows adjustment of the recording gain, this selector lets you get
and set the gain. In response to a Status call, a sound input driver
returns the current gain setting. In response to a Control call, a
sound input driver sets the gain level used for all subsequent
recording to the specified value. The infoData parameter points to
a 4-byte value of type Fixed ranging from 0.5 to 1.5, where 1.5
specifies maximum gain.

siInputSource Get and set the current sound input source. If the available
hardware allows recording from more than one source, this selector
lets you get and set the source. In response to a Status call, a sound
input driver returns the current source value; if the driver supports
only one source, it returns siUnknownInfoType. In response to a
Control call, a sound input driver sets the source of all subsequent
3-22 Sound Input Manager Reference

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
recording to the value passed in. If the value is less than 1 or greater
than the number of input sources, the driver returns paramErr; if
the driver supports only one source, it returns
siUnknownInfoType. The infoData parameter points to an
integer, which is the index of the current sound input source.

siInputSourceNames
Get a list of the names of all the sound input sources supported by
the sound input device. In response to a Status call, a sound input
device driver returns, in the location specified by the infoData
parameter, a handle to a block of memory that contains the names
of all sound sources supported by the driver. It is the driver’s
responsibility to allocate that block of memory, but it should not
release it. The software issuing this selector is responsible for
disposing of the handle. As a result, a device driver must detach
any resource handles (by calling DetachResource) before
returning them to the caller. The data in the handle has the same
format as an 'STR#' resource: a two-byte count of the strings in the
resource, followed by the strings themselves. The strings should
occur in the same order as the input sources returned by the
siInputSource selector. If the driver supports only one source, it
returns siUnknownInfoType. If the driver supports more than
one source but for some reason not all of them are currently
selectable, it returns a list of all available input sources.

siLevelMeterOnOff
Get or set the current state of the level meter. For calls to set the
level meter, the infoData parameter points to an integer that
indicates whether the level meter is off (0) or on (1). To get the level
meter setting, the infoData parameter points to two integers; the
first integer indicates the state of the level meter, and the second
integer contains the level value of the meter. The level meter setting
is an integer that ranges from 0 (no volume) to 255 (full volume).

siNumberChannels
Get or set the number of channels this device is to record. The
infoData parameter points to an integer, which indicates the
number of channels. Note that this selector determines the format of
the data stream output by the driver. If the number of channels is 1,
the driver should output monophonic data in response to a Read
call. If the number of channels is 2, the driver should output
interleaved stereo data.

siOptionsDialog
Determine whether the driver supports an Options dialog box
(SPBGetDeviceInfo) or cause the driver to display the Options
dialog box (SPBSetDeviceInfo). This dialog box is designed to
allow the user to configure device-specific features of the sound
input hardware. With SPBGetDeviceInfo, the infoData
parameter points to an integer, which indicates whether the driver
supports an Options dialog box (1 if it supports it, 0 otherwise).
With SPBSetDeviceInfo, the infoData parameter is unused.
Sound Input Manager Reference 3-23

C H A P T E R 3

Sound Input Manager
siPauseRecording
The Sound Input Manager uses this selector to get or set the current
pause state. The sound input device driver continues recording but
does not store the sampled data in a buffer. Your application should
never issue this selector directly. The infoData parameter points
to an integer, which indicates the state of pausing (0 is off, 1 is on).

siPlayThruOnOff
Get or set the current play-through state and volume. The
infoData parameter points to an integer, which indicates the
current play-through volume (1 to 7). If that integer is 0, then
play-through is off.

siRecordingQuality
Get or set the current quality of recorded sound. The infoData
parameter points to a buffer of type OSType, which is the recording
quality. Currently three qualities are supported, defined by these
constants:

CONST

siBestQuality = 'best';

siBetterQuality = 'betr';

siGoodQuality = 'good';

These qualities are defined by the sound input device driver.
Usually best means monaural, 8-bit, 22 kHz, sound with no
compression.

siSampleRate Get or set the sample rate to be produced by this device. The sample
rate must be in the range 0 to 65535.65535 Hz. The sample rate is
declared as a Fixed data type. In order to accommodate sample
rates greater than 32 kHz, the most significant bit is not treated as a
sign bit; instead, that bit is interpreted as having the value 32,768.
The infoData parameter points to a buffer of type Fixed, which is
the sample rate.

siSampleRateAvailable
Get the range of sample rates this device can produce. The
infoData parameter points to an integer, which is the number of
sample rates the device supports, followed by a handle. The handle
references a list of sample rates, each of type Fixed. If the device
can record a range of sample rates, the number of sample rates is set
to 0 and the handle contains two rates, the minimum and the
maximum of the range of sample rates. Otherwise, a list is returned
that contains the sample rates supported. In order to accommodate
sample rates greater than 32 kHz, the most significant bit is not
treated as a sign bit; instead, that bit is interpreted as having the
value 32,768.

siSampleSize Get or set the sample size to be produced by this device. Because
some compression formats require specific sample sizes, this
selector might return an error when compression is used. The
infoData parameter points to an integer, which is the sample size.
3-24 Sound Input Manager Reference

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
siSampleSizeAvailable
Get the range of sample sizes this device can produce. The
infoData parameter points to an integer, which is the number of
sample sizes the device supports, followed by a handle. The handle
references a list of sample sizes, each of type Integer.

siStereoInputGain
Get and set the current stereo sound input gain. If the available
hardware allows adjustment of the recording gain, this selector lets
you get and set the gain for each of two channels (left or right). In
response to a Status call, a sound input driver should return the
current gain setting for the specified channel. In response to a
Control call, a sound input driver should set the gain level used for
all subsequent recording to the specified value. The infoData
parameter points to two 4-byte values of type Fixed ranging from
0.5 to 1.5, where 1.5 specifies maximum gain. The first of these
values is equivalent to the gain for the left channel and the second
value is equivalent to the gain for the right channel.

siTwosComplementOnOff
Get or set the current state of the two’s complement feature. This
selector only applies to 8-bit data. (16-bit samples are always stored
in two’s complement format.) If on, the driver stores all samples in
the application buffer as two’s complement values (that is, –128 to
127). Otherwise, the driver stores the samples as offset binary
values (that is, 0 to 255). The infoData parameter points to an
integer, which is the current state of the two’s complement feature
(1 if two’s complement output is desired, 0 otherwise).

siUserInterruptProc
The Sound Input Manager sends this selector to specify the sound
input interrupt routine that the sound input device driver should
call. Your application should never issue this selector directly. The
infoData parameter points to a procedure pointer, which is the
address of the sound input interrupt routine.

siVoxRecordInfo
Get or set the current VOX recording parameters. The infoData
parameter points to two integers. The first integer indicates whether
VOX recording is on or off (0 if off, 1 if on). The second integer
indicates the VOX record trigger value. Trigger values range from
0 to 255 (0 is trigger immediately, 255 is trigger only on full volume).

siVoxStopInfo Get or set the current VOX stopping parameters. The infoData
parameter points to three integers. The first integer indicates
whether VOX stopping is on or off (0 if off, 1 if on). The second
integer indicates the VOX stop trigger value. Trigger values range
from 0 to 255 (255 is stop immediately, 0 is stop only on total
silence). The third integer indicates how many milliseconds the
trigger value must be continuously valid for recording to be
stopped. Delay values range from 0 to 65,535.
Sound Input Manager Reference 3-25

C H A P T E R 3

Sound Input Manager
Data Structures 3
This section describes the sound input parameter block.

Sound Input Parameter Blocks 3

The SPBRecord and SPBRecordToFile functions require a pointer to a sound input
parameter block that defines characteristics of the recording. If you define a sound input
completion routine or a sound input interrupt routine, your routine receives a pointer
to a sound input parameter block. If you are using only the Sound Input Manager’s
high-level SndRecord and SndRecordToFile functions, the operation of sound input
parameter blocks is transparent to your application. A sound input parameter block is
defined by the SPB data type.

TYPE SPB =

RECORD

inRefNum: LongInt; {reference number of input device}

count: LongInt; {number of bytes to record}

milliseconds: LongInt; {number of milliseconds to record}

bufferLength: LongInt; {length of buffer to record into}

bufferPtr: Ptr; {pointer to buffer to record into}

completionRoutine: ProcPtr; {pointer to a completion routine}

interruptRoutine: ProcPtr; {pointer to an interrupt routine}

userLong: LongInt; {for application's use}

error: OSErr; {error returned after recording}

unused1: LongInt; {reserved}

END;

Field descriptions

inRefNum The reference number of the sound input device (as received from
the SPBOpenDevice function) from which the recording is to occur.

count On input, the number of bytes to record. On output, the number of
bytes actually recorded. If this field specifies a longer recording time
than the milliseconds field, then the milliseconds field is
ignored on input.

milliseconds On input, the number of milliseconds to record. On output, the
number of milliseconds actually recorded. If this field specifies a
longer recording time than the count field, then the count field is
ignored on input.

bufferLength The length of the buffer into which recorded sound data is placed.
The recording time specified by the count or milliseconds field
is truncated to fit into this length, if necessary.

bufferPtr A pointer to the buffer into which recorded data is placed. If this
field is NIL, then the count, milliseconds, and bufferLength
fields are ignored and the recording will continue indefinitely until
the SPBStopRecording function is called. However, the data is
3-26 Sound Input Manager Reference

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
not stored anywhere, so setting this field to NIL is useful only if you
want to do something in a sound input interrupt routine but do not
want to save the recorded sound.

completionRoutine
A pointer to a completion routine that is called when the recording
terminates as a result of your calling the SPBStopRecording
function or when the limit specified by the count or
milliseconds field is reached. The completion routine executes
only if SPBRecord is called asynchronously and therefore is called
at interrupt time.

interruptRoutine
A pointer to a routine that is called by asynchronous recording
devices when their internal buffers are full. You can define a sound
input interrupt routine to modify uncompressed sound samples
before they are placed into the buffer specified in the bufferPtr
parameter. The interrupt routine executes only if SPBRecord is
called asynchronously and therefore is called at interrupt time.

userLong A long integer available for the application’s own use. You can use
this field, for instance, to pass a handle to an application-defined
structure to the completion routine or to the interrupt routine.

error On exit, the error that occurred during recording. This field contains
a value greater than 0 while recording unless an error occurs, in
which case it contains a value less than 0 that indicates an operating
system error. Your application can poll this field to check on the
status of an asynchronous recording. If recording terminates
without an error, this field contains 0.

unused1 Reserved for use by Apple. You should always initialize this
field to 0.

Sound Input Manager Routines 3
This section describes the routines provided by the Sound Input Manager. You can use
these routines to

■ record sounds using the sound recording dialog box

■ open and close sound input devices

■ record sounds directly from sound input devices

■ get information about sound input devices and change device settings

■ construct sound resource and file headers

■ register sound input devices with the Sound Input Manager

■ convert recording times between millisecond and byte values

■ obtain information about the version of the Sound Input Manager that is running

The section “Application-Defined Routines” on page 3-53 describes the format of sound
input completion routines and sound input interrupt routines.
Sound Input Manager Reference 3-27

C H A P T E R 3

Sound Input Manager
Recording Sounds 3

The Sound Input Manager provides two high-level sound input functions, SndRecord
and SndRecordToFile, for recording sound. These input routines are analogous to the
two Sound Manager functions SndPlay and SndStartFilePlay. By using these
high-level routines, you can be assured that your application presents a user interface
that is consistent with that displayed by other applications doing sound input. Both
SndRecord and SndRecordToFile attempt to record sound data from the sound
input hardware currently selected in the Sound In control panel.

SndRecord 3

You can use the SndRecord function to record sound resources into memory.

FUNCTION SndRecord (filterProc: ProcPtr; corner: Point;

quality: OSType; VAR sndHandle: Handle):

OSErr;

filterProc
A pointer to an event filter function that determines how user actions in
the sound recording dialog box are filtered (similar to the filterProc
parameter specified in a call to the ModalDialog procedure). By
specifying your own filter function, you can override or add to the
default actions of the items in the dialog box. If filterProc isn’t NIL,
SndRecord filters events by calling the function that filterProc
points to.

corner The horizontal and vertical coordinates of the upper-left corner of the
sound recording dialog box (in global coordinates).

quality The desired quality of the recorded sound.

sndHandle On entry, a handle to some storage space or NIL. On exit, a handle to a
valid sound resource (or unchanged, if the call did not execute
successfully).

DESCRIPTION

The SndRecord function records sound into memory. The recorded data has the
structure of a format 1 'snd ' resource and can later be played using the SndPlay
function or can be stored as a resource. SndRecord displays a sound recording dialog
box and is always called synchronously. Controls in the dialog box allow the user to
start, stop, pause, and resume sound recording, as well as to play back the recorded
sound. The dialog box also lists the remaining recording time and the current
microphone sound level.

The quality parameter defines the desired quality of the recorded sound. Currently,
three values are recognized for the quality parameter:
3-28 Sound Input Manager Reference

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
CONST

siBestQuality = 'best'; {the best quality available}

siBetterQuality = 'betr'; {a quality better than good}

siGoodQuality = 'good'; {a good quality}

The precise meanings of these parameters are defined by the sound input device driver.
For Apple-supplied drivers, this parameter determines whether the recorded sound is to
be compressed, and if so, whether at a 6:1 or a 3:1 ratio. The quality siBestQuality
does not compress the sound and provides the best quality output, but at the expense of
increased memory use. The quality siBetterQuality is suitable for most nonvoice
recording, and siGoodQuality is suitable for voice recording.

The sndHandle parameter is a handle to some storage space. If the handle is NIL, the
Sound Input Manager allocates a handle of the largest amount of space that it can find in
your application’s heap and returns this handle in the sndHandle parameter. The
Sound Input Manager resizes the handle when the user clicks the Save button in the
sound recording dialog box. If the sndHandle parameter passed to SndRecord is not
NIL, the Sound Input Manager simply stores the recorded data in the location specified
by that handle.

SPECIAL CONSIDERATIONS

Because the SndRecord function moves memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndRecord function are

RESULT CODES

SEE ALSO

See the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials for a
complete description of event filter functions.

Trap macro Selector

_SoundDispatch $08040014

noErr 0 No error
userCanceledErr –128 User canceled the operation
siBadSoundInDevice –221 Invalid sound input device
siUnknownQuality –232 Unknown quality
Sound Input Manager Reference 3-29

C H A P T E R 3

Sound Input Manager
SndRecordToFile 3

You can use SndRecordToFile to record sound data into a file.

FUNCTION SndRecordToFile (filterProc: ProcPtr; corner: Point;

quality: OSType;

fRefNum: Integer): OSErr;

filterProc
A pointer to a function that determines how user actions in the sound
recording dialog box are filtered.

corner The horizontal and vertical coordinates of the upper-left corner of the
sound recording dialog box (in global coordinates).

quality The desired quality of the recorded sound, as described on page 3-28.

fRefNum The file reference number of an open file to save the audio data in.

DESCRIPTION

The SndRecordToFile function works just like SndRecord except that it stores the
sound input data into a file. The resulting file is in either AIFF or AIFF-C format and
contains the information necessary to play the file by using the Sound Manager’s
SndStartFilePlay function. The SndRecordToFile function is always called
synchronously.

Your application must open the file specified in the fRefNum parameter before calling
the SndRecordToFile function. Your application must close the file sometime after
calling SndRecordToFile.

SPECIAL CONSIDERATIONS

Because the SndRecordToFile function moves memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndRecordToFile function are

RESULT CODES

Trap macro Selector

_SoundDispatch $07080014

noErr 0 No error
userCanceledErr –128 User canceled the operation
siBadSoundInDevice –221 Invalid sound input device
siUnknownQuality –232 Unknown quality
3-30 Sound Input Manager Reference

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
Opening and Closing Sound Input Devices 3

You can use the SPBOpenDevice function to open the default sound input device that
the user has selected in the Sound In control panel or to open a specific sound input
device. You must open a device before you can record from it by using SPBRecord, but
the Sound Input Manager’s high-level routines automatically open the default sound
input device. You can close a sound input device by calling the SPBCloseDevice
function.

SPBOpenDevice 3

You can use the SPBOpenDevice function to open a sound input device.

FUNCTION SPBOpenDevice (deviceName: Str255; permission: Integer;

VAR inRefNum: LongInt): OSErr;

deviceName
The name of the sound input device to open, or the empty string if the
default sound input device is to be opened.

permission
A flag that indicates whether subsequent operations with that device are
to be read/write or read-only.

inRefNum On exit, if the function is successful, a device reference number for the
open sound input device.

DESCRIPTION

The SPBOpenDevice function attempts to open a sound input device having the name
indicated by the deviceName parameter. If SPBOpenDevice succeeds, it returns a
device reference number in the inRefNum parameter. The permission parameter
indicates whether subsequent operations with that device are to be read/write or
read-only. If the device is not already in use, read/write permission is granted;
otherwise, only read-only operations are allowed. To make any recording requests or to
call the SPBSetDeviceInfo function, read/write permission must be available. Use
these constants to request the appropriate permission:

CONST

siReadPermission = 0; {open device for reading}

siWritePermission = 1; {open device for reading/writing}

You can request that the current default sound input device be opened by passing either
a zero-length string or a NIL string as the deviceName parameter. If only one sound
input device is installed, that device is used. Generally you should open the default
device unless you specifically want to use some other device. You can get a list of the
available devices by calling the SPBGetIndexedDevice function.
Sound Input Manager Reference 3-31

C H A P T E R 3

Sound Input Manager
SPECIAL CONSIDERATIONS

Because the SPBOpenDevice function allocates memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBOpenDevice function are

RESULT CODES

SPBCloseDevice 3

You can use the SPBCloseDevice function to close a sound input device.

FUNCTION SPBCloseDevice (inRefNum: LongInt): OSErr;

inRefNum The device reference number of the sound input device to close.

DESCRIPTION

The SPBCloseDevice function closes a device that was previously opened by
SPBOpenDevice and whose device reference number is specified in the
inRefNum parameter.

SPECIAL CONSIDERATIONS

Because the SPBCloseDevice function moves or purges memory, you should not call it
at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBCloseDevice function are

Trap macro Selector

_SoundDispatch $05180014

noErr 0 No error
permErr –54 Device already open for writing
siBadDeviceName –228 Invalid device name

Trap macro Selector

_SoundDispatch $021C0014
3-32 Sound Input Manager Reference

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
RESULT CODES

Recording Sounds Directly From Sound Input Devices 3

The Sound Input Manager provides a number of routines that allow you to begin, pause,
resume, and stop recording directly from a sound input device. These low-level routines
do not display the sound recording dialog box to the user.

SPBRecord 3

You can use the SPBRecord function to record audio data into memory, either
synchronously or asynchronously.

FUNCTION SPBRecord (inParamPtr: SPBPtr; asynchFlag: Boolean):

OSErr;

inParamPtr
A pointer to a sound input parameter block.

asynchFlag
A Boolean value that specifies whether the recording occurs
asynchronously (TRUE) or synchronously (FALSE).

You specify values and receive return values in the sound input parameter block.

Parameter block

Field descriptions

inRefNum The device reference number of the sound input device, as obtained
from the SPBOpenDevice function.

count On input, the number of bytes to record. If this field indicates a
longer recording time than the milliseconds field, then the

noErr 0 No error
siBadRefNum –229 Invalid reference number

→ inRefNum LongInt A reference number of a sound input
device.

↔ count LongInt The number of bytes of recording.
↔ milliseconds LongInt The number of milliseconds of

recording.
→ bufferLength LongInt The length of the buffer beginning at

bufferPtr.
→ bufferPtr Ptr A pointer to a buffer for sampled-sound

data.
→ completionRoutine ProcPtr A pointer to a completion routine.
→ interruptRoutine ProcPtr A pointer to an interrupt routine.
→ userLong LongInt Free for application’s use.
← error OSErr The error value returned after recording.
→ unused1 LongInt Reserved.
Sound Input Manager Reference 3-33

C H A P T E R 3

Sound Input Manager
milliseconds field is ignored. On output, this field indicates the
number of bytes actually recorded.

milliseconds On input, the number of milliseconds to record. If this field
indicates a longer recording time than the count field, then the
count field is ignored. On output, this field indicates the number of
milliseconds actually recorded.

bufferLength The number of bytes in the buffer specified by the bufferPtr
parameter. If this buffer length is too small to contain the amount of
sampled-sound data specified in the count and milliseconds
fields, then recording time is truncated so that the sampled-sound
data fits in the buffer.

bufferPtr A pointer to the buffer for the sampled-sound data, or NIL if you
wish to record sampled-sound data without saving it. On exit, this
buffer contains the sampled-sound data, which is interleaved for
stereo sound on a sample basis (or on a packet basis if the data is
compressed). This buffer contains only sampled-sound data, so if
you need a sampled sound header, you should set that up in a
buffer before calling SPBRecord and then record into the buffer
following the sound header.

completionRoutine
A pointer to a completion routine. This routine is called when the
recording terminates (either after you call the SPBStopRecording
function or when the prescribed limit is reached). The completion
routine is called only for asynchronous recording.

interruptRoutine
A pointer to an interrupt routine. The interrupt routine specified in
the interruptRoutine field is called by asynchronous recording
devices when their internal buffers are full.

userLong A long integer that your application can use to pass data to your
application’s completion or interrupt routines.

error On exit, a value greater than 0 while recording unless an error
occurs, in which case it contains a value less than 0 that indicates an
operating system error. Your application can poll this field to check
on the status of an asynchronous recording. If recording terminates
without an error, this field contains 0.

unused1 Reserved. You should set this field to 0 before calling SPBRecord.

DESCRIPTION

The SPBRecord function starts recording into memory from a device specified in a
sound input parameter block. The sound data recorded is stored in the buffer specified
by the bufferPtr and bufferLength fields of the parameter block. Recording lasts
the longer of the times specified by the count and milliseconds fields of the
parameter block, or until the buffer is filled. Recording is asynchronous if the
asynchFlag parameter is TRUE and the specified sound input device supports
asynchronous recording.
3-34 Sound Input Manager Reference

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
If the bufferPtr field of the parameter block contains NIL, then the count,
milliseconds, and bufferLength fields are ignored, and the recording continues
indefinitely until you call the SPBStopRecording function. In this case, the audio data
is not saved anywhere; this feature is useful only if you want to do something in your
interrupt routine and do not want to save the audio data. However, if the recording is
synchronous and bufferPtr is NIL, SPBRecord returns the result code
siNoBufferSpecified.

The SPBRecord function returns the value that the error field of the parameter block
contains when recording finishes.

SPECIAL CONSIDERATIONS

You can call the SPBRecord function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBRecord function are

RESULT CODES

SEE ALSO

For an example of the use of the SPBRecord function, see Listing 3-1.

SPBRecordToFile 3

You can use the SPBRecordToFile function to record audio data into a file, either
synchronously or asynchronously.

FUNCTION SPBRecordToFile (fRefNum: Integer; inParamPtr: SPBPtr;

asynchFlag: Boolean): OSErr;

fRefNum The file reference number of an open file in which to place the recorded
sound data.

inParamPtr
A pointer to a sound input parameter block.

Trap macro Selector

_SoundDispatch $03200014

noErr 0 No error
siNoSoundInHardware –220 No sound input hardware available
siBadSoundInDevice –221 Invalid sound input device
siNoBufferSpecified –222 No buffer specified
siDeviceBusyErr –227 Sound input device is busy
Sound Input Manager Reference 3-35

C H A P T E R 3

Sound Input Manager
asynchFlag
A Boolean value that specifies whether the recording occurs
asynchronously (TRUE) or synchronously (FALSE).

Parameter block

Field descriptions

inRefNum The device reference number of the sound input device, as obtained
from the SPBOpenDevice function.

count On input, the number of bytes to record. If this field indicates a
longer recording time than the milliseconds field, then the
milliseconds field is ignored. On output, the number of bytes
actually recorded.

milliseconds On input, the number of milliseconds to record. If this field
indicates a longer recording time than the count field, then the
count field is ignored. On output, the number of milliseconds
actually recorded.

completionRoutine
A pointer to a completion routine. This routine is called when the
recording terminates (after you call the SPBStopRecording
function, when the prescribed limit is reached, or after an error
occurs). The completion routine is called only for asynchronous
recording.

interruptRoutine
Unused. You should set this field to NIL before calling
SPBRecordToFile.

userLong A long integer that your application can use to pass data to your
application’s completion or interrupt routines.

error On exit, the error that occurred during recording. This field contains
the number 1 while recording unless an error occurs, in which case
it contains a value less than 0 that indicates an operating system
error. Your application can poll this field to check on the status of an
asynchronous recording. If recording terminates without an error,
this field contains 0.

unused1 Reserved. You should set this field to 0 before calling the
SPBRecordToFile function.

→ inRefNum LongInt A reference number of a sound input
device.

↔ count LongInt The number of bytes of recording.
↔ milliseconds LongInt The number of milliseconds of

recording.
→ completionRoutine ProcPtr A pointer to a completion routine.
→ interruptRoutine ProcPtr Unused.
→ userLong LongInt Free for application’s use.
← error OSErr The error value returned after recording.
→ unused1 LongInt Reserved.
3-36 Sound Input Manager Reference

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
DESCRIPTION

The SPBRecordToFile function starts recording from the specified device into a file.
The sound data recorded is simply stored in the file, so it is up to your application to
insert whatever headers are needed to play the sound with the Sound Manager. Your
application must open the file specified by the fRefNum parameter with write access
before calling SPBRecordToFile, and it must eventually close that file.

The fields in the parameter block specified by the inParamPtr parameter are identical
to the fields in the parameter block passed to the SPBRecord function, except that the
bufferLength and bufferPtr fields are not used. The interruptRoutine field is
ignored by SPBRecordToFile because SPBRecordToFile copies data returned by the
sound input device driver to disk during the sound input interrupt routine, but you
should initialize this field to NIL.

The SPBRecordToFile function writes samples to disk in the same format that they are
read in from the sound input device. If compression is enabled, then the samples written
to the file are compressed. Multiple channels of sound are interleaved on a sample basis
(or, for compressed sound data, on a packet basis). When you are recording 8-bit audio
data to an AIFF file, you must set the siTwosComplementOnOff flag to so that the
data is stored on disk in the two’s-complement format. If you don’t store the data in this
format, it sounds distorted when you play it back.

If any errors occur during the file writing process, recording is suspended. All File
Manager errors are returned through the function’s return value if the routine is called
synchronously. If the routine is called asynchronously and the completion routine is not
NIL, the completion routine is called and is passed a single parameter on the stack that
points to the sound input parameter block; any errors are returned in the error field of
the sound input parameter block.

The SPBRecordToFile function returns the value that the error field of the parameter
block contains when recording finishes.

SPECIAL CONSIDERATIONS

Because the SPBRecordToFile function moves or purges memory, you should not call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBRecordToFile function are

Trap macro Selector

_SoundDispatch $04240014
Sound Input Manager Reference 3-37

C H A P T E R 3

Sound Input Manager
RESULT CODES

SPBPauseRecording 3

You can use the SPBPauseRecording function to pause recording from a sound input
device.

FUNCTION SPBPauseRecording (inRefNum: LongInt): OSErr;

inRefNum The device reference number of the sound input device, as obtained from
the SPBOpenDevice function.

DESCRIPTION

The SPBPauseRecording function pauses recording from the device specified by
the inRefNum parameter. The recording must be asynchronous for this call to have
any effect.

SPECIAL CONSIDERATIONS

You can call the SPBPauseRecording function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBPauseRecording function are

RESULT CODES

noErr 0 No error
permErr –54 Attempt to open locked file for writing
siNoSoundInHardware –220 No sound input hardware available
siBadSoundInDevice –221 Invalid sound input device
siHardDriveTooSlow –224 Hard drive too slow to record

Trap macro Selector

_SoundDispatch $02280014

noErr 0 No error
siBadSoundInDevice –221 Invalid sound input device
3-38 Sound Input Manager Reference

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
SPBResumeRecording 3

You can use the SPBResumeRecording function to resume recording from a sound
input device.

FUNCTION SPBResumeRecording (inRefNum: LongInt): OSErr;

inRefNum The device reference number of the sound input device, as obtained from
the SPBOpenDevice function.

DESCRIPTION

The SPBResumeRecording function resumes recording from the device specified by
the inRefNum parameter. Recording on that device must previously have been paused
by a call to the SPBPauseRecording function for SPBResumeRecording to have
any effect.

SPECIAL CONSIDERATIONS

You can call the SPBResumeRecording function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBResumeRecording function are

RESULT CODES

SPBStopRecording 3

You can use the SPBStopRecording function to end a recording from a sound input
device.

FUNCTION SPBStopRecording (inRefNum: LongInt): OSErr;

inRefNum The device reference number of the sound input device, as obtained from
the SPBOpenDevice function.

Trap macro Selector

_SoundDispatch $022C0014

noErr 0 No error
siBadSoundInDevice –221 Invalid sound input device
Sound Input Manager Reference 3-39

C H A P T E R 3

Sound Input Manager
DESCRIPTION

The SPBStopRecording function stops recording from the device specified by the
inRefNum parameter. The recording must be asynchronous for SPBStopRecording
to have any effect. When you call SPBStopRecording, the sound input completion
routine specified in the completionRoutine field of the sound input parameter block
is called and the error field of that parameter block is set to abortErr. If you are
writing a device driver, you will receive a KillIO Status call. See the section “Writing
a Sound Input Device Driver” beginning on page 3-13 for more information.

SPECIAL CONSIDERATIONS

You can call the SPBStopRecording function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBStopRecording function are

RESULT CODES

SPBGetRecordingStatus 3

You can use SPBGetRecordingStatus to obtain recording status information about a
sound input device.

FUNCTION SPBGetRecordingStatus (inRefNum: LongInt;

VAR recordingStatus: Integer;

VAR meterLevel: Integer;

VAR totalSamplesToRecord: LongInt;

VAR numberOfSamplesRecorded: LongInt;

VAR totalMsecsToRecord: LongInt;

VAR numberOfMsecsRecorded: LongInt):

OSErr;

inRefNum The device reference number of the sound input device, as obtained from
the SPBOpenDevice function.

recordingStatus
The status of the recording. While the input device is recording, this
parameter is set to a number greater than 0. When a recording terminates
without an error, this parameter is set to 0. When an error occurs during

Trap macro Selector

_SoundDispatch $02300014

noErr 0 No error
siBadSoundInDevice –221 Invalid sound input device
3-40 Sound Input Manager Reference

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
recording or the recording has been terminated by a call to the
SPBStopRecording function, this parameter is less than 0 and contains
an error code.

meterLevel
The current input signal level. This level ranges from 0 to 255.

totalSamplesToRecord
The total number of samples to record, including those samples
already recorded.

numberOfSamplesRecorded
The number of samples already recorded.

totalMsecsToRecord
The total duration of recording time, including recording time
already elapsed.

numberOfMsecsRecorded
The amount of recording time that has elapsed.

DESCRIPTION

The SPBGetRecordingStatus function returns, in its second through seventh
parameters, information about the recording on the device specified by the inRefNum
parameter.

SPECIAL CONSIDERATIONS

You can call the SPBGetRecordingStatus function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBGetRecordingStatus function are

RESULT CODES

Manipulating Device Settings 3

You can use the two functions SPBGetDeviceInfo and SPBSetDeviceInfo to read
and change the settings of a sound input device.

Trap macro Selector

_SoundDispatch $0E340014

noErr 0 No error
siBadSoundInDevice –221 Invalid sound input device
Sound Input Manager Reference 3-41

C H A P T E R 3

Sound Input Manager
SPBGetDeviceInfo 3

You can use the SPBGetDeviceInfo function to get information about the settings of a
sound input device.

FUNCTION SPBGetDeviceInfo (inRefNum: LongInt; infoType: OSType;

infoData: Ptr): OSErr;

inRefNum The device reference number of the sound input device, as obtained from
the SPBOpenDevice function.

infoType A sound input device information selector that specifies the type of
information you need.

infoData A pointer to a buffer in which information should be returned. This buffer
must be large enough for the type of information specified in the
infoType parameter.

DESCRIPTION

The SPBGetDeviceInfo function returns information about the sound input device
specified by the inRefNum parameter. The type of information you want is specified in
the infoType parameter. The available sound input device information selectors are
listed in “Sound Input Device Information Selectors” beginning on page 3-18. The
information is copied into the buffer specified by the infoData parameter.

SPECIAL CONSIDERATIONS

Because the SPBGetDeviceInfo function might move memory, you should not call it
at interrupt time. Check the selector description of the selector you want to use to see if it
moves memory before calling the SPBGetDeviceInfo function. Most of the selectors
do not move memory and are therefore safe to use at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBGetDeviceInfo function are

RESULT CODES

Trap macro Selector

_SoundDispatch $06380014

noErr 0 No error
siBadSoundInDevice –221 Invalid sound input device
siUnknownInfoType –231 Unknown type of information
3-42 Sound Input Manager Reference

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
SEE ALSO

Listing 3-2 on page 3-12 shows an example that uses the SPBGetDeviceInfo function
to get the name of a sound input device driver.

SPBSetDeviceInfo 3

You can use the SPBSetDeviceInfo function to set information in a sound input
device.

FUNCTION SPBSetDeviceInfo (inRefNum: LongInt; infoType: OSType;

 infoData: Ptr): OSErr;

inRefNum The device reference number of the sound input device, as obtained from
the SPBOpenDevice function.

infoType A sound input device information selector that specifies the type of
information you need.

infoData A pointer to a buffer. This buffer can contain information on entry, and
information might be returned on exit. This buffer must be large enough
for the type of information specified in the infoType parameter, and the
data in the buffer must be set to appropriate values if information needs
to be passed in to the SPBSetDeviceInfo function.

DESCRIPTION

The SPBSetDeviceInfo function sets information about the sound input device
specified by the inRefNum parameter, based on the data in the buffer specified by the
infoData parameter.

The type of setting you wish to change is specified in the infoType parameter. The
sound input device information selectors are listed in “Sound Input Device Information
Selectors” beginning on page 3-18.

SPECIAL CONSIDERATIONS

Because the SPBSetDeviceInfo function might move memory, you should not call it
at interrupt time. Check the selector description of the selector you want to use to see if it
moves memory before calling the SPBGetDeviceInfo function. Most of the selectors
do not move memory and are therefore safe to use at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBSetDeviceInfo function are

Trap macro Selector

_SoundDispatch $063C0014
Sound Input Manager Reference 3-43

C H A P T E R 3

Sound Input Manager
RESULT CODES

Constructing Sound Resource and File Headers 3

The Sound Input Manager provides two functions, SetupSndHeader and
SetupAIFFHeader, to help you set up headers for sound resources and sound files.

SetupSndHeader 3

You can use the SetupSndHeader function to construct a sound resource containing
sampled sound that can be passed to the SndPlay function.

FUNCTION SetupSndHeader (sndHandle: Handle;

numChannels: Integer;

sampleRate: Fixed;

sampleSize: Integer;

compressionType: OSType;

baseFrequency: Integer;

numBytes: LongInt;

VAR headerLen: Integer): OSErr;

sndHandle A handle to a block of memory that is at least large enough to store the
sound resource header information. The handle is not resized in any way
upon successful completion of SetupSndHeader. The
SetupSndHeader function simply fills the relocatable block specified by
this parameter with the header information needed for a format 1
'snd ' resource, including the sound resource header, the list of sound
commands, and a sampled sound header. It is your application’s
responsibility to append the desired sampled-sound data.

numChannels
The number of channels for the sound; one channel is equivalent to
monaural sound and two channels are equivalent to stereo sound.

sampleRate
The rate at which the sound was recorded. The sample rate is declared as
a Fixed data type. In order to accommodate sample rates greater than
32 kHz, the most significant bit is not treated as a sign bit; instead, that bit
is interpreted as having the value 32,768.

sampleSize
The sample size for the original sound (that is, bits per sample).

noErr 0 No error
permErr –54 Attempt to open locked file for writing
siBadSoundInDevice –221 Invalid sound input device
siDeviceBusyErr –227 Sound input device is busy
siUnknownInfoType –231 Unknown type of information
3-44 Sound Input Manager Reference

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
compressionType
The compression type for the sound ('NONE', 'MAC3', 'MAC6', or other
third-party types).

baseFrequency
The base frequency for the sound, expressed as a MIDI note value.

numBytes The number of bytes of audio data that are to be stored in the handle.
(This value is not necessarily the same as the number of samples in
the sound.)

headerLen On exit, the size (in bytes) of the 'snd ' resource header that is created.
In no case will this length exceed 100 bytes. This field allows you to put
the audio data right after the header in the relocatable block specified by
the sndHandle parameter. The value returned depends on the type of
sound header created.

DESCRIPTION

The SetupSndHeader function creates a format 1 'snd ' resource for a sampled
sound. The resource contains a sound resource header that links the sound to the
sampled synthesizer, a single sound command (a bufferCmd command to play the
accompanying data), and a sampled sound header. You can use SetupSndHeader to
construct a sampled sound header that can be passed to the Sound Manager’s SndPlay
function or stored as an 'snd ' resource. After calling the SetupSndHeader function,
your application should place the sampled-sound data directly after the sampled sound
header so that, in essence, the sampled sound header’s final field contains the
sound data.

The sampled sound is in one of three formats depending on several of the parameters
passed. Table 3-1 shows how SetupSndHeader determines what kind of sound header
to create.

A good way to use this function is to create a handle in which you want to store a
sampled sound, then call SetupSndHeader with the numBytes parameter set to 0 to
see how much room the header for that sound will occupy and hence where to append
the audio data. Then record the data into the handle and call SetupSndHeader again
with numBytes set to the correct amount of sound data recorded. The handle filled out
in this way can be passed to SndPlay to play the sound.

Table 3-1 The sampled sound header format used by SetupSndHeader

compressionType numChannels sampleSize Sampled sound header format

'NONE' 1 8 SoundHeader

'NONE' 1 16 ExtSoundHeader

'NONE' 2 any ExtSoundHeader

 not 'NONE' any any CmpSoundHeader
Sound Input Manager Reference 3-45

C H A P T E R 3

Sound Input Manager
SPECIAL CONSIDERATIONS

You cannot call the SetupSndHeader function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SetupSndHeader function are

RESULT CODES

SEE ALSO

For an example that uses the SetupSndHeader function to set up a sound header
before recording, see Listing 3-1 on page 3-7.

SetupAIFFHeader 3

You can use the SetupAIFFHeader function to set up a file that can subsequently be
played by SndStartFilePlay.

FUNCTION SetupAIFFHeader (fRefNum: Integer;

numChannels: Integer;

 sampleRate: Fixed;

sampleSize: Integer;

compressionType: OSType;

numBytes: LongInt;

 numFrames: LongInt): OSErr;

fRefNum A file reference number of a file that is open for writing.

numChannels
The number of channels for the sound; one channel is equivalent to
monaural sound and two channels are equivalent to stereo sound.

sampleRate
The rate at which the sound was recorded. The sample rate is declared as
a Fixed data type. In order to accommodate sample rates greater than 32
kHz, the most significant bit is not treated as a sign bit; instead, that bit is
interpreted as having the value 32,768.

sampleSize
The sample size for the original sound (that is, bits per sample).

Trap macro Selector

_SoundDispatch $0D480014

noErr 0 No error
siInvalidCompression –223 Invalid compression type
3-46 Sound Input Manager Reference

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
compressionType
The compression type for the sound ('NONE', 'MAC3', 'MAC6', or other
third-party types).

numBytes The number of bytes of audio data that are to be stored in the Common
Chunk of the AIFF or AIFF-C file.

numFrames The number of sample frames for the sample sound. If you are using a
compression type defined by Apple, you can pass 0 in this field and the
appropriate value for this field will be computed automatically.

DESCRIPTION

The SetupAIFFHeader function creates an AIFF or AIFF-C file header, depending on
the parameters passed to it:

■ Uncompressed sounds of any type are stored in AIFF format (that is, the
compressionType parameter is 'NONE').

■ Compressed sounds of any type are stored in AIFF-C format (that is, the
compressionType parameter is different from 'NONE').

Note
The SetupAIFFHeader function might format a sound file as an AIFF
file even if the File Manager file type of a file is 'AIFC'. The Sound
Manager will still play such files correctly. ◆

The AIFF header information is written starting at the current file position of the file
specified by the fRefNum parameter, and the file position is left at the end of the header
upon completion. The SetupAIFFHeader function creates a Form Chunk, a Format
Version Chunk, a Common Chunk, and a Sound Data chunk, but it does not put any
sound data at the end of the Sound Data Chunk.

A good way to use this routine is to create a file that you want to store a sound in, then
call SetupAIFFHeader with numBytes set to 0 to position the file to be ready to write
the audio data. Then record the data to the file, set the file position to the beginning of
the file, and call SetupAIFFHeader again with numBytes set to the correct amount of
sound data recorded. The file created in this way can be passed to the
SndStartFilePlay function to play the sound.

SPECIAL CONSIDERATIONS

If recording produces an odd number of bytes of sound data, you must add a pad byte to
make the total number of bytes even.

Because the SetupAIFFHeader function moves memory, you should not call it at
interrupt time.
Sound Input Manager Reference 3-47

C H A P T E R 3

Sound Input Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SetupAIFFHeader function are

RESULT CODES

Registering Sound Input Devices 3

Sound input device drivers must call the SPBSignInDevice function to register with
the Sound Input Manager before they can use its sound input services. You might call
this routine at system startup time from within an extension to install a sound input
device driver. Your application can generate a list of registered sound input devices by
using the SPBGetIndexedDevice function. You can cancel the registration of your
driver, thus removing it from the Sound control panel and making it inaccessible, by
calling the SPBSignOutDevice function.

SPBSignInDevice 3

You can register a sound input device by calling the SPBSignInDevice function.

FUNCTION SPBSignInDevice (deviceRefNum: Integer;

deviceName: Str255): OSErr;

deviceRefNum
The device driver reference number of the sound input device to register
with the Sound Input Manager.

deviceName
The device’s name as it is to appear to the user in the Sound In control
panel (which is not the name of the driver used by the Device Manager).

DESCRIPTION

The SPBSignInDevice function registers with the Sound Input Manager the device
whose driver reference number is deviceRefNum.

The deviceName parameter specifies this device’s name as it is to appear to the user in
the Sound In control panel (which is not the name of the driver itself). Accordingly, the
name should be as descriptive as possible. You should call SPBSignInDevice after you
have already opened your driver by calling normal Device Manager routines.

Trap macro Selector

_SoundDispatch $0B4C0014

noErr 0 No error
siInvalidCompression –223 Invalid compression type
3-48 Sound Input Manager Reference

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
SPECIAL CONSIDERATIONS

Because the SPBSignInDevice function moves or purges memory, you should not call
it at interrupt time. You can, however, call it at system startup time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBSignInDevice function are

RESULT CODES

SPBGetIndexedDevice 3

You can use the SPBGetIndexedDevice function to help generate a list of sound input
devices.

FUNCTION SPBGetIndexedDevice (count: Integer;

VAR deviceName: Str255;

VAR deviceIconHandle: Handle):

OSErr;

count The index number of the sound input device you wish to obtain
information about.

deviceName
On exit, the name of the sound input device specified by the count
parameter.

deviceIconHandle
On exit, a handle to the icon of the sound input device specified by the
count parameter. The memory for this icon is allocated automatically,
but your application must dispose of it.

DESCRIPTION

The SPBGetIndexedDevice function returns the name and icon of the device whose
index is specified in the count parameter. Your application can create a list of sound
input devices by calling this function with a count starting at 1 and incrementing it by
1 until the function returns siBadSoundInDevice.

Because the Sound In control panel allows the user to select a sound input device, most
applications should not use this function. Your application might need to use this
function if it allows the user to record from more than one sound input device at once.

Trap macro Selector

_SoundDispatch $030C0014

noErr 0 No error
siBadSoundInDevice –221 Invalid sound input device
Sound Input Manager Reference 3-49

C H A P T E R 3

Sound Input Manager
SPECIAL CONSIDERATIONS

Because the SPBGetIndexedDevice function allocates memory, you should not call it
at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBGetIndexedDevice function are

RESULT CODES

SPBSignOutDevice 3

You can use the SPBSignOutDevice function to cancel the registration of a device you
have previously registered with the SPBSignInDevice function.

FUNCTION SPBSignOutDevice (deviceRefNum: Integer): OSErr;

deviceRefNum
The driver reference number of the device you wish to sign out.

DESCRIPTION

The SPBSignOutDevice function cancels the registration of the device whose driver
reference number is deviceRefNum; the device is unregistered from the Sound Input
Manager’s list of available sound input devices and no longer appears in the Sound In
control panel.

Ordinarily, you should not need to use the SPBSignOutDevice function. You might use
it if your device driver detects that a sound input device is not functioning correctly or
has been disconnected.

SPECIAL CONSIDERATIONS

Because the SPBSignOutDevice function moves or purges memory, you should not
call it at interrupt time.

Trap macro Selector

_SoundDispatch $05140014

noErr 0 No error
siBadSoundInDevice –221 Invalid sound input device
3-50 Sound Input Manager Reference

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBSignOutDevice function are

RESULT CODES

Converting Between Milliseconds and Bytes 3

The Sound Input Manager provides two routines that allow you to convert between
millisecond and byte recording values.

SPBMilliSecondsToBytes 3

You can use the SPBMilliSecondsToBytes function to determine how many bytes a
recording of a certain duration will use.

FUNCTION SPBMilliSecondsToBytes (inRefNum: LongInt;

VAR milliseconds: LongInt): OSErr;

inRefNum The device reference number of the sound input device, as obtained from
the SPBOpenDevice function.

milliseconds
On entry, the duration of the recording in milliseconds. On exit, the
number of bytes that sampled-sound data would occupy for a recording
of the specified duration on the device specified by the inRefNum
parameter.

DESCRIPTION

The SPBMilliSecondsToBytes function reports how many bytes are required to store
a recording of duration milliseconds, given the input device’s current sample rate,
sample size, number of channels, and compression factor.

SPECIAL CONSIDERATIONS

You can call the SPBMilliSecondsToBytes function at interrupt time.

Trap macro Selector

_SoundDispatch $01100014

noErr 0 No error
siBadSoundInDevice –221 Invalid sound input device
siDeviceBusyErr –227 Sound input device is busy
Sound Input Manager Reference 3-51

C H A P T E R 3

Sound Input Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBMilliSecondsToBytes function are

RESULT CODES

SPBBytesToMilliSeconds 3

You can use the SPBBytesToMilliSeconds function to determine the maximum
duration of a recording that can fit in a buffer of a certain size.

FUNCTION SPBBytesToMilliSeconds (inRefNum: LongInt;

VAR byteCount: LongInt): OSErr;

inRefNum The device reference number of the sound input device, as obtained from
the SPBOpenDevice function.

byteCount On entry, a value in bytes. On exit, the number of milliseconds of
recording on the device specified by the inRefNum parameter that would
be necessary to fill a buffer of such a size.

DESCRIPTION

The SPBBytesToMilliSeconds function reports how many milliseconds of audio
data can be recorded in a buffer that is byteCount bytes long, given the input device’s
current sample rate, sample size, number of channels, and compression factor.

SPECIAL CONSIDERATIONS

You can call the SPBBytesToMilliSeconds function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBBytesToMilliSeconds function are

RESULT CODES

Trap macro Selector

_SoundDispatch $04400014

noErr 0 No error
siBadSoundInDevice –221 Invalid sound input device

Trap macro Selector

_SoundDispatch $04440014

noErr 0 No error
siBadSoundInDevice –221 Invalid sound input device
3-52 Sound Input Manager Reference

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
Obtaining Information 3

The SPBVersion function allows you to determine the version of the Sound
Input Manager.

SPBVersion 3

You can use the SPBVersion function to determine the version of the sound input tools
available on a machine.

FUNCTION SPBVersion: NumVersion;

DESCRIPTION

The SPBVersion function returns a version number that contains the same information
as in the first 4 bytes of a 'vers' resource or a NumVersion data type. For a description
of the version record, see the chapter “Sound Manager” in this book.

SPECIAL CONSIDERATIONS

You can call the SPBVersion function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBVersion function are

SEE ALSO

For a complete discussion of 'vers' resources, see the chapter “Finder Interface” in
Inside Macintosh: Macintosh Toolbox Essentials.

Application-Defined Routines 3
This section describes the routines that your application or device driver might need to
define. Your application can define a sound input completion routine to perform an
action when recording finishes, and your application can define a sound input interrupt
routine to manipulate sound data during recording.

Trap macro Selector

_SoundDispatch $00000014
Sound Input Manager Reference 3-53

C H A P T E R 3

Sound Input Manager
Sound Input Completion Routines 3

You can specify a sound input completion routine in the completionRoutine field of a
sound input parameter block that your application uses to initiate asynchronous
recording directly from a device.

MySICompletionRoutine 3

A sound input completion routine has the following syntax:

PROCEDURE MySICompletionRoutine (inParamPtr: SPBPtr);

inParamPtr
A pointer to the sound input parameter block that was used to initiate an
asynchronous recording.

DESCRIPTION

The Sound Input Manager executes your sound input completion routine after recording
terminates either because your application has called the SPBStopRecording function
or because the prescribed limit is reached. The completion routine is called only for
asynchronous recording.

A common use of a sound input completion routine is to set a global variable that alerts
the application that it should dispose of a sound input parameter block that it had
allocated for an asynchronous sound recording.

SPECIAL CONSIDERATIONS

Because a sound input completion routine is executed at interrupt time, it should not
allocate, move, or purge memory (either directly or indirectly) and should not depend
on the validity of handles to unlocked blocks.

If your sound input completion routine accesses your application’s global variables, it
must ensure that the A5 register contains the address of the boundary between the
application global variables and the application parameters. Your application can pass
the value of the A5 register to the sound input completion routine in the userLong field
of the sound input parameter block. For more information on ensuring the validity of the
A5 register, see the chapter “Memory Management Utilities” in Inside Macintosh: Memory.

Your sound input completion routine can determine whether an error occurred during
recording by examining the error field of the sound input parameter block specified by
inParamPtr. Your sound input completion routine can change the value of that field to
alert the application that some other error has occurred.
3-54 Sound Input Manager Reference

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
ASSEMBLY-LANGUAGE INFORMATION

Because a sound input completion routine is called at interrupt time, it must preserve all
registers other than A0–A1 and D0–D2.

RESULT CODES

Sound Input Interrupt Routines 3

You can specify a sound input interrupt routine in the interruptRoutine field of
the sound input parameter block that your application uses to initiate asynchronous
recording directly from a device. Because the SPBRecordToFile function uses sound
input interrupt routines to enable it to record sound data to disk during recording, you
can use sound input interrupt routines only with the SPBRecord function.

MySIInterruptRoutine 3

A sound input interrupt routine has the following syntax:

PROCEDURE MySIInterruptRoutine;

DESCRIPTION

A sound input device driver executes the sound input interrupt routine associated with
an asynchronous sound recording whenever the driver’s internal buffers are full. The
internal buffers contain raw samples taken directly from the input device. The interrupt
routine can thus modify the samples in the buffer in any way it requires. After your
sound input interrupt routine finishes processing the data, the sound input device
driver compresses the data (if compression is enabled) and copies the data into your
application’s buffer.

SPECIAL CONSIDERATIONS

If your sound input interrupt routine accesses your application’s global variables, it
must ensure that the A5 register contains the address of the boundary between the
application global variables and the application parameters. Your application can pass
the value of the A5 register to the sound input interrupt routine in the userLong field of
the sound input parameter block. For more information on ensuring the validity of the
A5 register, see the chapter “Memory Management Utilities” in Inside Macintosh: Memory.

noErr 0 No error
abortErr –27 Asynchronous recording was cancelled
siNoSoundInHardware –220 No sound input hardware available
siBadSoundInDevice –221 Invalid sound input device
siNoBufferSpecified –222 No buffer specified
siDeviceBusyErr –227 Sound input device is busy
Sound Input Manager Reference 3-55

C H A P T E R 3

Sound Input Manager
ASSEMBLY-LANGUAGE INFORMATION

Sound input interrupt routines are sometimes written in assembly language to maximize
real-time performance in recording sound. On entry, registers are set up as follows:

If you write a sound input interrupt routine in a high-level language like Pascal or C,
you might need to write inline code to copy variables from the registers into local
variables that your application defines.

Because a sound input interrupt routine is called at interrupt time, it must preserve
all registers.

Registers on entry

A0 Address of the sound parameter block passed to SPBRecord

A1 Address of the start of the sample buffer

D0 Peak amplitude for sample buffer if metering is on

D1 Size of the sample buffer in bytes
3-56 Sound Input Manager Reference

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
Summary of the Sound Input Manager 3

Pascal Summary 3

Constants 3

CONST

gestaltSoundAttr = 'snd ';{sound attributes selector}

{Gestalt response bit flags related to sound input}

gestaltSoundIOMgrPresent = 3; {sound input routines available}

gestaltBuiltInSoundInput = 4; {built-in input hw available}

gestaltHasSoundInputDevice = 5; {sound input device available}

gestaltPlayAndRecord = 6; {built-in hw can play while recording}

gestalt16BitSoundIO = 7; {built-in hw can handle 16-bit data}

gestaltStereoInput = 8; {built-in hw can record stereo sounds}

gestaltLineLevelInput = 9; {built-in input hw needs line level}

{available information selectors for sound input device drivers}

siActiveChannels = 'chac'; {channels active}

siActiveLevels = 'lmac'; {levels active}

siAGCOnOff = 'agc '; {automatic gain control state}

siAsync = 'asyn'; {asynchronous capability}

siChannelAvailable = 'chav'; {number of channels available}

siCompressionAvailable = 'cmav'; {compression types available}

siCompressionFactor = 'cmfa'; {current compression factor}

siCompressionHeader = 'cmhd'; {return compression header}

siCompressionNames = 'cnam'; {return compression type names}

siCompressionType = 'comp'; {current compression type}

siContinuous = 'cont'; {continuous recording}

siDeviceBufferInfo = 'dbin'; {size of interrupt buffer}

siDeviceConnected = 'dcon'; {input device connection status}

siDeviceIcon = 'icon'; {input device icon}

siDeviceName = 'name'; {input device name}

siInputGain = 'gain'; {input gain level}

siInputSource = 'sour'; {input source selector}

siInputSourceNames = 'snam'; {input source names}

siLevelMeterOnOff = 'lmet'; {level meter state}

siNumberChannels = 'chan'; {current number of channels}
Summary of the Sound Input Manager 3-57

C H A P T E R 3

Sound Input Manager
siOptionsDialog = 'optd'; {display options dialog box}

siPlayThruOnOff = 'plth'; {play-through state}

siRecordingQuality = 'qual'; {recording quality}

siSampleRate = 'srat'; {current sample rate}

siSampleRateAvailable = 'srav'; {sample rates available}

siSampleSize = 'ssiz'; {current sample size}

siSampleSizeAvailable = 'ssav'; {sample sizes available}

siStereoInputGain = 'sgai'; {stereo input gain level}

siTwosComplementOnOff = 'twos'; {two's complement state}

siVoxRecordInfo = 'voxr'; {VOX record parameters}

siVoxStopInfo = 'voxs'; {VOX stop parameters}

{internal information selectors for sound input device drivers}

siCloseDriver = 'clos'; {release driver}

siInitializeDriver = 'init'; {initialize driver}

siPauseRecording = 'paus'; {pause recording}

siUserInterruptProc = 'user'; {set sound input interrupt routine}

{sound-recording qualities}

siBestQuality = 'best'; {the best quality available}

siBetterQuality = 'betr'; {a quality better than good}

siGoodQuality = 'good'; {a good quality}

{sound input device permissions}

siReadPermission = 0; {open device for reading}

siWritePermission = 1; {open device for reading/writing}

{device-connection states}

siDeviceIsConnected = 1; {device is connected and ready}

siDeviceNotConnected = 0; {device is not connected}

siDontKnowIfConnected = -1; {can't tell if device is connected}

Data Types 3

Sound Input Parameter Block

TYPE SPB =

RECORD

inRefNum: LongInt; {reference number of input device}

count: LongInt; {number of bytes to record}

milliseconds: LongInt; {number of milliseconds to record}

bufferLength: LongInt; {length of buffer to record into}

bufferPtr: Ptr; {pointer to buffer to record into}

completionRoutine: ProcPtr; {pointer to a completion routine}
3-58 Summary of the Sound Input Manager

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
interruptRoutine: ProcPtr; {pointer to an interrupt routine}

userLong: LongInt; {for application's use}

error: OSErr; {error returned after recording}

unused1: LongInt; {reserved}

END;

SPBPtr = ^SPB;

Sound Input Manager Routines 3

Recording Sounds

FUNCTION SndRecord (filterProc: ProcPtr; corner: Point;
quality: OSType; VAR sndHandle: Handle): OSErr;

FUNCTION SndRecordToFile (filterProc: ProcPtr; corner: Point;
quality: OSType; fRefNum: Integer): OSErr;

Opening and Closing Sound Input Devices

FUNCTION SPBOpenDevice (deviceName: Str255; permission: Integer;
VAR inRefNum: LongInt): OSErr;

FUNCTION SPBCloseDevice (inRefNum: LongInt): OSErr;

Recording Sounds Directly From Sound Input Devices

FUNCTION SPBRecord (inParamPtr: SPBPtr; asynchFlag: Boolean):
OSErr;

FUNCTION SPBRecordToFile (fRefNum: Integer; inParamPtr: SPBPtr;
asynchFlag: Boolean): OSErr;

FUNCTION SPBPauseRecording (inRefNum: LongInt): OSErr;

FUNCTION SPBResumeRecording
(inRefNum: LongInt): OSErr;

FUNCTION SPBStopRecording (inRefNum: LongInt): OSErr;

FUNCTION SPBGetRecordingStatus
(inRefNum: LongInt;
VAR recordingStatus: Integer;
VAR meterLevel: Integer;
VAR totalSamplesToRecord: LongInt;
VAR numberOfSamplesRecorded: LongInt;
VAR totalMsecsToRecord: LongInt;
VAR numberOfMsecsRecorded: LongInt): OSErr;

Manipulating Device Settings

FUNCTION SPBGetDeviceInfo (inRefNum: LongInt; infoType: OSType;
infoData: Ptr): OSErr;
Summary of the Sound Input Manager 3-59

C H A P T E R 3

Sound Input Manager
FUNCTION SPBSetDeviceInfo (inRefNum: LongInt; infoType: OSType;
infoData: Ptr): OSErr;

Constructing Sound Resource and File Headers

FUNCTION SetupSndHeader (sndHandle: Handle; numChannels: Integer;
sampleRate: Fixed; sampleSize: Integer;
compressionType: OSType;
baseFrequency: Integer; numBytes: LongInt;
VAR headerLen: Integer): OSErr;

FUNCTION SetupAIFFHeader (fRefNum: Integer; numChannels: Integer;
sampleRate: Fixed; sampleSize: Integer;
compressionType: OSType; numBytes: LongInt;
numFrames: LongInt): OSErr;

Registering Sound Input Devices

FUNCTION SPBSignInDevice (deviceRefNum: Integer; deviceName: Str255):
OSErr;

FUNCTION SPBGetIndexedDevice
(count: Integer; VAR deviceName: Str255;
VAR deviceIconHandle: Handle): OSErr;

FUNCTION SPBSignOutDevice (deviceRefNum: Integer): OSErr;

Converting Between Milliseconds and Bytes

FUNCTION SPBMilliSecondsToBytes
(inRefNum: LongInt; VAR milliseconds: LongInt):
OSErr;

FUNCTION SPBBytesToMilliSeconds
(inRefNum: LongInt; VAR byteCount: LongInt):
OSErr;

Obtaining Information

FUNCTION SPBVersion : NumVersion;

Application-Defined Routines 3

PROCEDURE MySICompletionRoutine
(inParamPtr: SPBPtr);

PROCEDURE MySIInterruptRoutine;
3-60 Summary of the Sound Input Manager

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
C Summary 3

Constants 3

#define gestaltSoundAttr 'snd ' /*sound attributes selector*/

enum {

/*Gestalt response bit flags related to sound input*/

gestaltSoundIOMgrPresent = 3, /*sound input routines available*/

gestaltBuiltInSoundInput = 4, /*built-in input hw available*/

gestaltHasSoundInputDevice = 5, /*sound input device available*/

gestaltPlayAndRecord = 6, /*built-in hw can play while recording*/

gestalt16BitSoundIO = 7, /*built-in hw can handle 16-bit data*/

gestaltStereoInput = 8, /*built-in hw can record stereo sounds*/

gestaltLineLevelInput = 9 /*built-in input hw needs line level*/

};

/*available information selectors for sound input device drivers*/

#define siActiveChannels 'chac' /*channels active*/

#define siActiveLevels 'lmac' /*levels active*/

#define siAGCOnOff 'agc ' /*automatic gain control state*/

#define siAsync 'asyn' /*asynchronous capability*/

#define siChannelAvailable 'chav' /*number of channels available*/

#define siCompressionAvailable'cmav' /*compression types available*/

#define siCompressionFactor 'cmfa' /*current compression factor*/

#define siCompressionHeader 'cmhd' /*return compression header*/

#define siCompressionNames 'cnam' /*return compression type names*/

#define siCompressionType 'comp' /*current compression type*/

#define siContinuous 'cont' /*continuous recording*/

#define siDeviceBufferInfo 'dbin' /*size of interrupt buffer*/

#define siDeviceConnected 'dcon' /*input device connection status*/

#define siDeviceIcon 'icon' /*input device icon*/

#define siDeviceName 'name' /*input device name*/

#define siInputGain 'gain' /*input gain level*/

#define siInputSource 'sour' /*input source selector*/

#define siInputSourceNames 'snam' /*input source names*/

#define siLevelMeterOnOff 'lmet' /*level meter state*/

#define siNumberChannels 'chan' /*current number of channels*/

#define siOptionsDialog 'optd' /*display options dialog box*/

#define siPlayThruOnOff 'plth' /*play-through state*/

#define siRecordingQuality 'qual' /*recording quality*/

#define siSampleRate 'srat' /*current sample rate*/

#define siSampleRateAvailable 'srav' /*sample rates available*/
Summary of the Sound Input Manager 3-61

C H A P T E R 3

Sound Input Manager
#define siSampleSize 'ssiz' /*current sample size*/

#define siSampleSizeAvailable 'ssav' /*sample sizes available*/

#define siStereoInputGain 'sgai' /*stereo input gain level*/

#define siTwosComplementOnOff 'twos' /*two's complement state*/

#define siVoxRecordInfo 'voxr' /*VOX record parameters*/

#define siVoxStopInfo 'voxs' /*VOX stop parameters*/

/*internal information selectors for sound input device drivers*/

#define siCloseDriver 'clos' /*release driver*/

#define siInitializeDriver 'init' /*initialize driver*/

#define siPauseRecording 'paus' /*pause recording*/

#define siUserInterruptProc 'user' /*set sound input interrupt routine*/

/*sound-recording qualities*/

#define siBestQuality 'best' /*the best quality available*/

#define siBetterQuality 'betr' /*a quality better than good*/

#define siGoodQuality 'good' /*a good quality*/

/*sound input device permissions*/

enum {

siReadPermission = 0, /*open device for reading*/

siWritePermission = 1 /*open device for reading/writing*/

};

/*device-connection states*/

enum {

siDeviceIsConnected = 1, /*device is connected and ready*/

siDeviceNotConnected = 0, /*device is not connected*/

siDontKnowIfConnected = -1 /*can't tell if device is connected*/

};

Data Types 3

Sound Input Parameter Block

struct SPB {

long inRefNum; /*reference number of input device*/

unsigned long count; /*number of bytes to record*/

unsigned long milliseconds; /*number of milliseconds to record*/

unsigned long bufferLength; /*length of buffer to record into*/

Ptr bufferPtr; /*pointer to buffer to record into*/

ProcPtr completionRoutine;

/*pointer to a completion routine*/

ProcPtr interruptRoutine;
3-62 Summary of the Sound Input Manager

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
/*pointer to an interrupt routine*/

long userLong; /*for application's use*/

OSErr error; /*error returned after recording*/

long unused1; /*reserved*/

};

typedef struct SPB SPB;

typedef SPB *SPBPtr;

Sound Input Manager Routines 3

Recording Sounds

pascal OSErr SndRecord (ModalFilterProcPtr filterProc, Point corner,
OSType quality, Handle *sndHandle);

pascal OSErr SndRecordToFile
(ModalFilterProcPtr filterProc, Point corner,
OSType quality, short fRefNum);

Opening and Closing Sound Input Devices

pascal OSErr SPBOpenDevice (ConstStr255Param deviceName, short permission,
long *inRefNum);

pascal OSErr SPBCloseDevice
(long inRefNum);

Recording Sounds Directly From Sound Input Devices

pascal OSErr SPBRecord (SPBPtr inParamPtr, Boolean asynchFlag);

pascal OSErr SPBRecordToFile
(short fRefNum, SPBPtr inParamPtr,
Boolean asynchFlag);

pascal OSErr SPBPauseRecording
(long inRefNum);

pascal OSErr SPBResumeRecording
(long inRefNum);

pascal OSErr SPBStopRecording
(long inRefNum);

pascal OSErr SPBGetRecordingStatus
(long inRefNum, short *recordingStatus,
short *meterLevel,
unsigned long *totalSamplesToRecord,
unsigned long *numberOfSamplesRecorded,
unsigned long *totalMsecsToRecord,
unsigned long *numberOfMsecsRecorded);
Summary of the Sound Input Manager 3-63

C H A P T E R 3

Sound Input Manager
Manipulating Device Settings

pascal OSErr SPBGetDeviceInfo
(long inRefNum, OSType infoType,
char *infoData);

pascal OSErr SPBSetDeviceInfo
(long inRefNum, OSType infoType,
char *infoData);

Constructing Sound Resource and File Headers

pascal OSErr SetupSndHeader
(Handle sndHandle, short numChannels,
Fixed sampleRate, short sampleSize,
OSType compressionType, short baseFrequency,
unsigned long numBytes, short *headerLen);

pascal OSErr SetupAIFFHeader
(short fRefNum, short numChannels,
Fixed sampleRate, short sampleSize,
OSType compressionType,
unsigned long numBytes,
unsigned long numFrames);

Registering Sound Input Devices

pascal OSErr SPBSignInDevice
(short deviceRefNum,
ConstStr255Param deviceName);

pascal OSErr SPBGetIndexedDevice
(short count, Str255 deviceName,
Handle *deviceIconHandle);

pascal OSErr SPBSignOutDevice
(short deviceRefNum);

Converting Between Milliseconds and Bytes

pascal OSErr SPBMilliSecondsToBytes
(long inRefNum, long *milliseconds);

pascal OSErr SPBBytesToMilliSeconds
(long inRefNum, long *byteCount);

Obtaining Information

pascal NumVersion SPBVersion
(void);
3-64 Summary of the Sound Input Manager

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
Application-Defined Routines 3

pascal void MySICompletionRoutine
(SPBPtr inParamPtr);

pascal void MySIInterruptRoutine
(void);

Assembly-Language Summary 3

Data Structures 3

Sound Input Parameter Block Data Structure

0 inRefNum long The input device reference number
4 count long The number of bytes to record
8 milliseconds long The number of milliseconds to record

12 bufferLength long The length of the buffer
16 bufferPtr long The address of the buffer
20 completionRoutine long A pointer to a completion routine
24 interruptRoutine long A pointer to an interrupt routine
28 userLong long For application’s use
32 error word The error value returned after recording
36 unused1 long Reserved
Summary of the Sound Input Manager 3-65

C H A P T E R 3

Sound Input Manager
Trap Macros 3

Trap Macros Requiring Routine Selectors

_SoundDispatch

Result Codes 3

Selector Routine

$00000014 SPBVersion

$01100014 SPBSignOutDevice

$021C0014 SPBCloseDevice

$02280014 SPBPauseRecording

$022C0014 SPBResumeRecording

$02300014 SPBStopRecording

$030C0014 SPBSignInDevice

$03200014 SPBRecord

$04240014 SPBRecordToFile

$04400014 SPBMillisecondsToBytes

$04440014 SPBBytesToMilliseconds

$05140014 SPBGetIndexedDevice

$05180014 SPBOpenDevice

$06380014 SPBGetDeviceInfo

$063C0014 SPBSetDeviceInfo

$07080014 SndRecordToFile

$08040014 SndRecord

$0B4C0014 SetupAIFFHeader

$0D480014 SetupSndHeader

$0E340014 SPBGetRecordingStatus

noErr 0 No error
abortErr –27 Asynchronous recording was cancelled
permErr –54 Attempt to open locked file for writing
userCanceledErr –128 User canceled the operation
siNoSoundInHardware –220 No sound input hardware available
siBadSoundInDevice –221 Invalid sound input device
siNoBufferSpecified –222 No buffer specified
siInvalidCompression –223 Invalid compression type
siHardDriveTooSlow –224 Hard drive too slow to record
siInvalidSampleRate –225 Invalid sample rate
siInvalidSampleSize –226 Invalid sample size
siDeviceBusyErr –227 Sound input device is busy
siBadDeviceName –228 Invalid device name
3-66 Summary of the Sound Input Manager

C H A P T E R 3

Sound Input Manager

3
S

ound Input M
anager
siBadRefNum –229 Invalid reference number
siInputDeviceErr –230 Input device hardware failure
siUnknownInfoType –231 Unknown type of information
siUnknownQuality –232 Unknown quality
Summary of the Sound Input Manager 3-67

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Sound TOC
	 Introduction to Sound
	 Sound Manager TOC
	 Sound Manager
	 Sound Input Manager TOC
	Sound Input Manager
	About the Sound Input Manager
	Sound Recording Without the Standard Interface
	Interaction With Sound Input Devices
	Sound Input Device Drivers

	Using the Sound Input Manager
	Recording Sounds Directly From a Device
	Defining a Sound Input Completion Routine
	Defining a Sound Input Interrupt Routine

	Getting and Setting Sound Input Device Information...
	Writing a Sound Input Device Driver
	Responding to Status and Control Requests
	Responding to Read Requests
	Supporting Stereo Recording
	Supporting Continuous Recording

	Sound Input Manager Reference
	Constants
	Gestalt Selector and Response Bits
	Sound Input Device Information Selectors

	Data Structures
	Sound Input Parameter Blocks

	Sound Input Manager Routines
	Recording Sounds
	Opening and Closing Sound Input Devices
	Recording Sounds Directly From Sound Input Devices...
	Manipulating Device Settings
	Constructing Sound Resource and File Headers
	Registering Sound Input Devices
	Converting Between Milliseconds and Bytes
	Obtaining Information

	Application-Defined Routines
	Sound Input Completion Routines
	Sound Input Interrupt Routines

	Summary of the Sound Input Manager
	Pascal Summary
	Constants
	Data Types
	Sound Input Manager Routines
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Sound Input Manager Routines
	Application-Defined Routines

	Assembly-Language Summary
	Data Structures
	Trap Macros

	Result Codes

	 Speech Manager TOC
	 Speech Manager
	 Sound Components TOC
	 Sound Components
	 Audio Components TOC
	 Audio Components
	 Glossary
	 Index
	 Colophon

