CHAPTER 3

Sound Input Manager

This chapter describes the Sound Input Manager, the part of the Macintosh system
software that controls the recording of sound through sound input devices. You can use
the Sound Input Manager to display and manage the sound recording dialog box. This
ensures that the user is presented with a consistent and standard user interface for sound
recording. You can, however, also use Sound Input Manager routines to record sound
without the sound recording dialog box or to interact directly with a sound input

device driver.

To use this chapter, you should already be familiar with the information in the chapter
“Introduction to Sound on the Macintosh” earlier in this book, and in particular with the
portions of that chapter that concern sound recording. That chapter explains how your
application can record either a sound resource or a sound file using the standard sound
recording dialog box. You need to read this chapter only if you need to interact with the
Sound Input Manager at a lower level than is allowed by the high-level functions
SndRecor d and SndRecor dToFi | e. For example, you need to read this chapter to
learn how to

= record sound without using the sound recording dialog box
= interact with a sound input device driver
= write a sound input device driver

To use this chapter, you should also be familiar with the chapter “Sound Manager” in
this book, especially the portions of that chapter that describe

Jabeuey 1nduj punos m

» the format of sampled-sound data
» the Macintosh Audio Compression and Expansion (MACE) routines
» the structure of sound resources and sound files

» the use of the Gest al t function to determine whether certain sound-related facilities
are available.

If you are writing a sound input device driver, you should already be familiar with
writing device drivers in general, as described in the book Inside Macintosh: Devices.

About the Sound Input Manager

The Sound Input Manager uses sound input device drivers to allow applications to
access sound input hardware in a device-independent way. A sound input device driver
is a standard Macintosh device driver used to interface to an audio digitizer or other
recording hardware. If you use the Sound Input Manager’s high-level routines, the
Sound Input Manager handles all communication with a sound input device driver for
you. If, however, you need to use the Sound Input Manager’s low-level routines, you
must open a sound input device driver yourself. You might also need to get information
about certain attributes of a sound input device. Sound input device drivers allow your
application to query a device about such attributes.

About the Sound Input Manager 3-3

3-4

CHAPTER 3

Sound Input Manager

Sound Recording Without the Standard Interface

The Sound Input Manager provides your application with the ability to record and
digitally store sounds in a device-independent manner even if your application does not
use the standard sound recording interface. In cases where you need very fine control
over the recording process, you can call various low-level sound input routines.

Your application can obtain control over sound recording in two different ways. First, if
your application uses the sound recording dialog box, you can modify the dialog box’s
features by defining a custom filter procedure, as explained in detail in the chapter
“Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials. Second, if your
application needs to fine tune the sound recording process itself (or if your application
does not use the standard sound recording dialog box), then the application must use the
Sound Input Manager’s low-level routines.

In instances where you need to gain greater control over the recording process, you can
use a set of routines that manipulate the incoming sound data by using sound parameter
blocks. The parameter blocks contain information about the current recording device, the
length recorded, a routine to call on completion of the recording, and so forth. You can
call the SPBRecor d function (or the SPBRecor dToFi | e function) to begin a recording.
Then you can use the functions SPBPauseRecor di ng, SPBResunmeRecor di ng, and
SPBSt opRecor di ng to control the recording. Note that you need to open a device
(using the SPBOpenDevi ce function) before you can record from it. On completion of
the recording, you should close the device (using the SPBCl oseDevi ce function).

If you do record sounds using the Sound Input Manager’s low-level routines, you also
need to set up your own sound resource headers or sound files, because the Sound Input
Manager’s low-level routines return raw sampled-sound data to your application.

The Sound Input Manager provides two functions, Set upSndHeader and

Set upAl FFHeader, that allow you to set up your own sound resource headers or
sound files.

Interaction With Sound Input Devices

The Sound Input Manager provides routines that allow your application to request
information about a sound input device or to change a sound input device’s settings.
The types of information you can obtain about a sound input device include

s the name, icon, and icon mask of the device driver
= whether the device driver supports asynchronous recording

= the device’s settings, such as the number of channels the device is to record, the
compression type, the number of bytes per sample at the current compression setting,
and the sample rate to be produced by the device

= the range of compression types, sample rates, and sample sizes that the device
supports

You can also use the Sound Input Manager to change some of a sound input device’s
settings and to turn features on and off. For example, you can turn on and off automatic
gain control on some device drivers. Automatic gain control moderates sound recording

About the Sound Input Manager

CHAPTER 3

Sound Input Manager

to give a consistent signal level. Second, you can turn on and off the playthrough
feature, which allows the user to hear through the Macintosh speaker the sound being
recorded. Third, you can turn on and off VOX recording, or voice-activated recording,
which allows your application to record only when the amplitude of sound input
exceeds a certain level. You can use VOX recording either to prevent recording from
starting until sound is at least a certain amplitude or to automatically stop recording
when sound falls below a certain amplitude. This latter capability is called

VOX stopping.

An important feature of sound input devices is continuous recording. All sound input
devices that support asynchronous recording should support continuous recording as
well. Continuous recording allows your application to make several consecutive calls to
the SPBRecor d function without losing data between calls. For example, you might
need to record a lengthy sound to disk but not be able to fit the entire sound into RAM.
Thus, it’s important to be able to save a buffer of data to disk while the sound input
device driver continues to collect recorded data. The Sound Input Manager’s
SndRecor dToFi | e function relies on continuous recording.

To get information about a device or to turn features on and off, you can use the

SPBGCet Devi cel nf 0 and SPBSet Devi cel nf o functions. These functions allow you to
use sound input device information selectors to specify what type of information you
need to know about the device or what settings you wish to change.

Jabeuey 1nduj punos m

Sound Input Device Drivers

The Sound Input Manager also provides several routines intended for use only by sound
input device drivers. Sound input device drivers need to register themselves with the
Sound Input Manager by calling the SPBSi gnl nDevi ce function. This makes that
device visible in the Sound In control panel for possible selection as the current input
device. You can remove a device from that panel by calling the SPBSi gnQut Devi ce
function.

For Macintosh computers with built-in sound recording hardware, the system software
includes a sound input device driver. This driver automatically calls SPBSi gnl nDevi ce
when the computer starts up. If you are creating a sound input device driver for some
other sound recording hardware, your device driver must register itself at startup time.
Once your driver is registered, it must respond to Status, Control, and Read calls issued
by the Sound Input Manager. The Sound Input Manager issues Status calls to get
information about a device, Control calls to set device settings, and Read calls to

initiate recording.

Using the Sound Input Manager

You can use the Sound Input Manager to record sounds with the sound recording dialog
box, to record sounds directly from a device, to get and set information about a sound
input device, and to register your sound input device driver so that it can respond to

Using the Sound Input Manager 3-5

TYPE SPB =
RECORD

CHAPTER 3

Sound Input Manager

Read, Status, and Control calls. This section does not explain how to record sounds using
the sound recording dialog box; for information on that, see the chapter “Introduction to
Sound on the Macintosh” in this book.

Recording Sounds Directly From a Device

The Sound Input Manager provides a number of routines that you can use for low-level
control over the recording process (such as the ability to intercept sound input data at
interrupt time). You can open a sound input device and read data from it by calling these
low-level Sound Input Manager routines. Several of those routines access information
through a sound input parameter block, which is defined by the SPB data type:

i nRef Num Longl nt; {reference nunber of input device}

count:

Longl nt; {nunber of bytes to record}

mlliseconds: Longl nt ; {nunber of mlliseconds to record}
buf f er Lengt h: Longl nt; {length of buffer to record into}
bufferPtr: Ptr; {pointer to buffer to record into}

conpl et

onRout i ne: ProcPtr; {pointer to a conpletion routine}

i nterrupt Routi ne: ProcPtr; {pointer to an interrupt routine}
user Long: Longl nt; {for application's use}

error:
unusedl:
END;

3-6

OSErr; {error returned after recordi ng}
Longl nt; {reserved}

The i nRef Numfield indicates the reference number of the sound input device from
which the recording is to occur. You can obtain the reference number of the default
sound input device by using the SPBOpenDevi ce function.

The count, mi | | i seconds, and buf f er Lengt h fields jointly determine the length of
recording. The count field indicates the number of bytes to record; them | | i seconds
field indicates the number of milliseconds to record; and the buf f er Lengt h field
indicates the length in bytes of the buffer into which the recorded sound data is to be
placed. If the count and mi | | i seconds fields are not equivalent, then the field which
specifies the longer recording time is used. If the buffer specified by the buf f er Lengt h
field is shorter than this recording time, then the recording time is truncated so that the
recorded data can fit into the buffer specified by the buf f er Pt r field. The Sound
Input Manager provides two functions, SPBM | | i SecondsToByt es and

SPBByt esToM | | i Seconds, that allow you to convert between byte and

millisecond values.

After recording finishes, the count and mi | | i seconds fields indicate the number of
bytes and milliseconds actually recorded.

The conpl et i onRout i ne and i nt er r upt Rout i ne fields allow your application
to define a sound input completion routine and a sound input interrupt routine,
respectively. More information on these routines is provided later in this section.

Using the Sound Input Manager

CHAPTER 3

Sound Input Manager

The user Long field contains a long integer that is provided for your application’s own
use. You can use this field, for instance, to pass a handle to an application-defined
structure to the sound input completion or interrupt routine. Or, you can use this field
to store the value of your application’s A5 register, so that your sound input completion
or interrupt routine can access your application’s global variables. For more information
on preserving the value of the A5 register, see the discussion of the Set A5 and

Set Cur r ent A5 functions in the chapter “Memory Management Utilities” in

Inside Macintosh: Memory.

The err or field describes any errors that occur during the recording. This field contains
a value greater than 0 while recording unless an error occurs, in which case it contains a
value less than 0 that indicates an operating system error. Your application can poll this
field to check on the status of an asynchronous recording. If recording terminates
without an error, this field contains 0.

Listing 3-1 shows how to set up a sound parameter block and record synchronously
using the SPBRecor d function. This procedure takes one parameter, a handle to a block
of memory in which the recorded sound data is to be stored. It is assumed that the
block of memory is large enough to hold the sound to be recorded.

Listing 3-1 Recording directly from a sound input device

PROCEDURE MyRecor dSnd (nySndH: Handl e) ;
CONST

kAsync = TRUE

kM ddl eC = 60;

Jabeuey 1nduj punos m

VAR
nmy SPB: SPB; {a sound i nput paraneter bl ock}
nyl nRef Num Longl nt; {devi ce reference nunber}
nyBuf f Si ze: Longl nt; {size of buffer to record into}
nyHeadr Len: I nt eger; {length of sound header}
nyNunthans: I nt eger; {number of channel s}
nySanmpSi ze: I nt eger; {size of a sanple}
nmy SanpRat e: Fi xed; {sanpl e rate}
nmyConmpType: OSType; {conpression type}
myErr: OSErr;

BEG N

{Open the default input device for reading and witing.}
nyErr := SPBOpenDevice('', siWitePerm ssion, nylnRefNunj;

IF nyErr = noErr THEN
BEG N
{Get current settings of sound input device.}
MyGet Devi ceSet ti ngs(nyl nRef Num myNuntChans, nySanpRate,
nySanmpSi ze, nmyConpType);

Using the Sound Input Manager 3-7

CHAPTER 3

Sound Input Manager

{Set up handle to contain the 'snd ' resource header.}
nyErr := SetupSndHeader (mySndH, myNunthans, nySanpRate, mySanpSi ze,
nmyCompType, kM ddl eC, 0, myHeadrLen);

{Leave roomin buffer for the sound resource header.}
nyBuf f Si ze : = Get Handl eSi ze(nySndH) - nyHeadr Len

{Lock down the sound handle until the recording is over.}
HLockHi (mySndH)

{Set up the sound input paraneter block.}
W TH nySPB do

BEG N
i nRef Num : = nyl nRef Num {input device reference nunber}
count := nyBuffSize; {nunber of bytes to record}
mlliseconds := 0O; {no mlliseconds}
bufferLength : = nyBuffSize; {length of buffer}

bufferPtr := Ptr(ORD4(nmySndH') + nyHeadrLen);
{put data after 'snd ' header}

conpl eti onRoutine := N L; {no conpl etion routine}

interruptRoutine := NL; {no interrupt routine}

userLong : = O; {no user data}

error := noFErr; {clear error field}

unusedl : = 0; {clear reserved field}
END;

{Record synchronously through the open sound input device.}
myErr := SPBRecord(@ySPB, NOT kAsync);

HUnl ock(mySndH) ; {unl ock the handl e}

{Indicate the nunmber of bytes actually recorded.}

nyErr := SetupSndHeader (nmySndH, myNunthans, nySanpRate, mySanpSi ze,
myConmpType, kM ddl eC, nySPB. count,
nmyHeadr Len) ;

{C ose the input device.}
nyErr : = SPBC oseDevi ce(nyl nRef Num ;

END;

END;

Using the Sound Input Manager

CHAPTER 3

Sound Input Manager

The MyRecor dSnd procedure defined in Listing 3-1 opens the default sound input
device by using the SPBOpenDevi ce function. You can specify one of two values for the
per mi ssi on parameter of SPBOpenDevi ce:

CONST
si ReadPernmission = 0; {open device for reading}
si WitePerm ssion 1; {open device for reading/witing}

You must open a device for both reading and writing if you intend to use the

SPBSet Devi cel nf o function or the SPBRecor d function. If SPBOpenDevi ce
successfully opens the specified device for reading and writing, M/Recor dSnd calls
the MyGet Devi ceSet ti ngs procedure (defined in Listing 3-3 on page 3-12). That
procedure calls the Sound Input Manager function SPBGet Devi cel nf o (explained in
“Getting and Setting Sound Input Device Information” on page 3-10) to determine the
current number of channels, sample rate, sample size, and compression type in use by
the device.

This information is then passed to the Set upSndHeader function, which sets up the
handle ny SndHwith a sound header describing the current device settings. After doing
this, MyRecor dSnd sets up a sound input parameter block and calls the SPBRecor d
function to record a sound. Note that the handle must be locked during the recording
because the parameter block contains a pointer to the input buffer. After the recording is
done, MyRecor dSnd once again calls the Set upSndHeader function to fill in the actual
number of bytes recorded.

If the MyRecor dSnd procedure defined in Listing 3-1 executes successfully, the handle
my SndH points to a resource of type' snd ' . Your application can then synchronously
play the recorded sound, for example, by executing the following line of code:

nyErr := SndPlay(N L, nmySndH, FALSE);

For more information on playing sounds your application has recorded, see the chapter
“Sound Manager” in this book.

Defining a Sound Input Completion Routine

The conpl et i onRout i ne field of the sound parameter block record contains the
address of a completion routine that is executed when the recording terminates
normally, either by reaching its prescribed time or size limits or by the application
calling the SPBSt opRecor di ng function. A completion routine should have the
following format:

PROCEDURE MySI Conpl eti onRoutine (inParanPtr: SPBPtr);

The completion routine is passed the address of the sound input parameter block that
was passed to the SPBRecor d function. You can gain access to other data structures in
your application by passing an address in the user Long field of the parameter block.
After the completion routine executes, your application should check the er r or field of
the sound input parameter block to see if an error code was returned.

Using the Sound Input Manager 3-9

Jabeuey 1nduj punos m

CHAPTER 3

Sound Input Manager

Your sound input interrupt routine is always called at interrupt time, so it should not call
routines that might allocate or move memory or assume that A5 is set up. For more
information on sound input interrupt routines, see “Sound Input Interrupt Routines”
beginning on page 3-55.

Defining a Sound Input Interrupt Routine

The i nt er r upt Rout i ne field of the sound input parameter block contains the address
of a routine that executes when the internal buffers of an asynchronous recording device
are filled. The internal buffers contain raw sound samples taken directly from the input
device. The interrupt routine can modify the samples in the buffer in any way it requires.
The processed samples are then written to the application buffer. If compression is
enabled, the modified data is compressed after your interrupt routine operates on the
samples and before the samples are written to the application buffer.

Your sound input interrupt routine is always called at interrupt time, so it should not call
routines that might allocate or move memory or assume that A5 is set up. For more
information on sound input interrupt routines, see “Sound Input Interrupt Routines”
beginning on page 3-55.

Getting and Setting Sound Input Device Information

You can get information about a specific sound input device and alter a sound

input device’s settings by calling the functions SPBGet Devi cel nf o and

SPBSet Devi cel nf 0. These functions accept sound input device information selectors
that determine which information you need or want to change. The selectors currently
available are defined by constants of type OSType.

Here is a list of the selectors that all sound input device drivers must support. For
complete details on all the selectors described in this section, see “Sound Input Device
Information Selectors” beginning on page 3-18.

CONST
si Async = 'asyn'; {asynchronous capability}
si Channel Avai | abl e = 'chav'; {nunber of channel s avail abl e}
si Conpressi onAvai lable = 'cmav'; {conpression types avail abl e}
si Conpr essi onFact or = ‘'cnfa'; {current conpression factor}
si Conpr essi onType = 'conp'; {conpression type}
si Cont i nuous = 'cont'; {conti nuous recording}
si Devi ceBufferlnfo = 'dbin'; {size of interrupt buffer}
si Devi ceConnect ed "dcon'; {i nput device connection status}
si Devi cel con ='icon'; {i nput device icon}
si Devi ceNarme = 'nane'; {i nput device nane}
si Level Met er OnOrF f ='"lnet'; {level neter state}
si Nunber Channel s = 'chan'; {current nunber of channel s}
si Recordi ngQual ity = 'qual'; {recording quality}
si Sanpl eRat e = 'srat'; {current sanple rate}

3-10 Using the Sound Input Manager

CHAPTER 3

Sound Input Manager

si Sanpl eRat eAvai | abl e = 'srav'; {sanpl e rates avail abl e}
si Sanpl eSi zeAvai | abl e = 'ssav'; {sanpl e sizes avail abl e}
si Sanpl eSi ze = 'ssiz'; {current sanple size}

si TwosConpl enent OnCOf f = "twos'; {two's conpl enent state}

The Sound Input Manager defines several selectors that specifically help it interact with
sound input device drivers. Your application should not use any of these selectors, but if
you are implementing a sound input device driver, you need to support these selectors.
They are:

CONST
si Cl oseDri ver = 'clos'; {rel ease driver}
silnitializeDriver ='init"; {initialize driver}
si PauseRecor di ng = ' paus'; {pause recordi ng}
si User I nterruptProc = 'user'; {set sound input interrupt routine}

Finally, there are a number of sound input device information selectors that sound input
device drivers can optionally support. If you are writing an application, you can use
these selectors to interact with a sound input device driver, but you should be aware that
some drivers might not support all of them. To determine if a driver supports one of
these selectors, you can use the SPBGet Devi cel nf o function. If no errors are returned,
then the selector is supported when using the SPBGet Devi cel nf 0 and the

SPBSet Devi cel nf o functions.

CONST
si Acti veChannel s = 'chac'; {channel s active}
si ActivelLevel s = "I nmac'; {level s active}
si AGCOnOf f = "agc '; {automatic gain control state}
si Conpr essi onHeader = 'cnhd'; {get conpression header}
si Conpr essi onNanes = 'cnam ; {return conpression type nanes}
si | nput Gai n = 'gain'; {input gain |evel}
si | nput Sour ce = 'sour'; {i nput source sel ector}
si | nput Sour ceNanes = 'snam ; {i nput source nanes}
si OptionsDi al og = 'optd'; {di splay options dial og box}
si Pl ayThruOnOf f "plth'; {pl ay-t hrough state}
si Stereol nput Gai n = 'sgai'; {stereo input gain |evel}
si VoxRecordl nfo "Voxr'; {VOX record paraneters}
si VoxSt opl nfo = 'voxs'; {VOX stop paraneters}

The format of the relevant data (either returned by the Sound Input Manager or
provided by you) depends on the selector you provide. For example, if you want
to determine the name of some sound input device, you can pass to the

SPBGCet Devi cel nf o function the si Devi ceNane selector and a pointer to a
256-byte buffer. If the SPBGet Devi cel nf o function can get the information, it fills
that buffer with the name of the specified sound input device. Listing 3-2 illustrates
one way you can determine the name of a particular sound input device.

Using the Sound Input Manager 3-11

Jabeuey 1nduj punos m

CHAPTER 3

Sound Input Manager

Listing 3-2 Determining the name of a sound input device

FUNCTI ON MyGet Devi ceNanme (nyRef Num Longlnt; VAR dName: Str255): OSErr;
BEG N

MyGet Devi ceNane : = SPBCGet Devi cel nf o(nyRef Num si Devi ceNanme, Ptr(@Nane));
END;

Note
You can get the name and icon of all connected sound input devices

without using sound input information selectors by using the
SPBGCet | ndexedDevi ce function, which is described on page 3-49. O

Some selectors cause the SPBGet Devi cel nf o function to return data of other types.
Listing 3-3 illustrates how to determine the number of channels, the sample rate, the
sample size, and the compression type currently in use by a given sound input device.
(The procedure defined in Listing 3-3 is called in the procedure defined in Listing 3-1.)

Listing 3-3 Determining some sound input device settings

PROCEDURE MyGet Devi ceSettings (nyRef Num Longlnt;
VAR nuntChannel s: | nt eger;
VAR sanpl eRat e: Fi xed;
VAR sanpl eSi ze: | nteger;
VAR conpressi onType: OSType);
VAR
myErr: CSErr;
BEG N
{Get number of active channels.}
nyErr : = SPBGet Devi cel nfo (nyRef Num si Nunmber Channel s, Ptr(@unChannel s));
{Get sanple rate.}
myErr : = SPBCet Devi cel nfo(nyRef Num si Sanpl eRate, Ptr(@anpl eRate));
{Get sanmple size.}
nyErr : = SPBGet Devi cel nf o(nyRef Num si Sanpl eSi ze, Ptr(@anpl eSi ze));
{Get conpression type.}
nyErr : = SPBGet Devi cel nf o(myRef Num si Conpr essi onType,
Pt r (@onpressi onType));
END;

All of the selectors that return a handle allocate the memory for that handle in the
current heap zone; you are responsible for disposing of that handle when you are done
with it, and you should verify that there is enough memory for such a handle before
calling the selector.

3-12 Using the Sound Input Manager

CHAPTER 3

Sound Input Manager

Writing a Sound Input Device Driver

This section describes what you need to do when you do write a sound input device
driver. If you write a sound input device driver, you should set the dr vr FI ags field of
the sound input device driver’s header to indicate that the driver can handle Status,
Control, and Read requests. The driver header should also indicate that the driver needs
to be locked.

IMPORTANT

You don’t need to write a device driver to use sound input

capabilities. a

After you create a device driver, you must write an extension that installs it. Before
your extension installs the driver, it should pass the Gest al t function the

gest al t SoundAt t r attribute selector and inspect the gest al t Soundl OMgr Pr esent
bit to determine if the sound input routines are available. If so, the extension should
install the sound input device driver into the unit table just as any other driver must

be installed.

After installing the driver, the extension must then make an Open request to the driver,
so that the driver can perform any necessary initialization. In particular, the driver might
set the dCt | St or age field of the device control entry to a pointer or a handle to a block
in the system heap containing all of the variables that it might need. Finally, the device
driver signs into the Sound Input Manager by calling the SPBSi gnl nDevi ce function.

Once signed in, a driver can receive Status, Control, and Read requests from the
Sound Input Manager. On entry, the A0 register contains a pointer to a standard
Device Manager parameter block, and the A1 register contains a pointer to the
device control entry. For more information on using registers in a device driver,
see Inside Macintosh: Devices.

Responding to Status and Control Requests

The Sound Input Manager supports sound input device information selectors by
sending your device driver Status and Control requests. It uses Status requests to get
information about your device; it uses Control requests to change settings of your sound
input device.

The behavior of your sound input device driver in response to Status and Control
requests depends on the value of the csCode field of the Device Manager control
parameter block. If the csCode field contains 2, then the sound input information
selector is passed in the first 4 bytes of the csPar amfield of the Device Manager control
parameter block. For Status requests, the next 18 bytes can be used for your device driver
to pass information back to an application. For Control requests, these 18 bytes are used
by an application to pass data to your sound input device driver.

Figure 3-1 shows the contents of the csPar amfield of the Device Manager control
parameter block for a sample Status request. The first four bytes of the csPar amfield
contain the input selector ' srav' , which is a request for the available sample rates. The
next four bytes of the field contain a pointer to an application-supplied buffer in which
to return the data (the number of rates available) from the Status request.

Using the Sound Input Manager 3-13

Jabeuey 1nduj punos m

CHAPTER 3

Sound Input Manager

Figure 3-1 An example of the csPar amfield for a Status request
csPar am field Bytes
"srav' 4

Pointer to application-supplied buffer 4

On exit from the Status request, your sound input device driver can respond in one of
two ways. If you are returning fewer than 18 bytes of data, your device driver should
specify in the first 4 bytes of the csPar amfield of the Device Manager control parameter
block the number of bytes of data being returned and place the data in the following 18
bytes. In this case, the Sound Input Manager copies the data to the application-supplied
buffer identified in Figure 3-1. If you are returning more than 18 bytes of data, your
device driver should copy the data to the application-supplied buffer. In this case,

your device driver needs to place a zero in the first 4 bytes of the csPar amfield to
indicate to the Sound Input Manager that the data has already been copied to the
application-supplied buffer.

Figure 3-2 shows the contents of the csPar amfield of the Device Manager control
parameter block for a sample Control request. The first four bytes of the csPar amfield
contain the input selector ' srat' which determines the sample rate for the sound input
device. The next eighteen bytes contain the data, which in this example is the sample rate
to set for your sound input device. This is a Fi xed value of four bytes in length.

3-14

Figure 3-2 An example of the csPar amfield for a Control request
csPar am field Bytes
"srat’ 4
OX56EE8BA3 4

Using the Sound Input Manager

CHAPTER 3

Sound Input Manager

Note

Some sound input information selectors require your sound input
device driver to allocate a handle in which to store information. In this
case, your driver should attempt to allocate an appropriately sized
handle in the current heap zone. If allocation fails, your driver should
return the appropriate Memory Manager result code. O

Your sound input device driver must respond to a core set of selectors, but the remaining
selectors defined by Apple are optional. Your device driver might also define private
selectors to support proprietary features. (Selectors containing all lowercase letters,
however, are reserved by Apple.) The section “Getting and Setting Sound Input Device
Information” beginning on page 3-10 lists the core selectors and other selectors that have
been defined.

If the csCode field contains 1 (which can occur only for Control requests), the Sound
Input Manager is attempting to stop asynchronous recording; that is, it is issuing a

Ki | I I Orequest. In response to this, the driver should stop copying data to the
application buffer, update the i 0Act Count field of the request parameter block, and
return via an RTS instruction.

Before exiting after a Status and Control request, your sound input device driver should
fill the DO register with the appropriate result code or noEr r. To exit, your sound input
device driver should check whether the Status and Control request was executed
immediately or was queued.

Note

In current versions of system software, the Sound Input Manager always
issues Status and Control requests immediately. This might change in
future versions of system software. O

Your sound input device driver can determine whether a request is issued immediately
by checking the noQueueBi t in the i oTr ap field of the Device Manager control
parameter block. If the request was made immediately, the Control routine should return
via an RTS instruction; if the request was queued, the Control routine should jump to the
Device Manager’s | ODone function via the global jump vector J| CDone. You need to
make sure that the A0 and A1 registers are set the same as they are on entry to the device
driver or JI CDone will fail.

Responding to Read Requests

When a sound input device receives a Read request, it must start recording and saving
recorded data into the buffer specified by the i oBuf f er field of the request parameter
block. If that field is NI L, the driver should record but not save the data. During a Read
request, your sound input device driver can access the sound parameter block that
initiated recording through the i oM sc field of the request parameter block.

If a previous Control request has assigned a sound input interrupt routine to the device
driver and your driver records asynchronously, then the driver must call the routine
each time its internal buffer becomes filled, setting up registers as described in “Defining
a Sound Input Interrupt Routine” on page 3-10. The buffer size that your device driver
specifies in the D1 register should indicate how much your device records during every

Using the Sound Input Manager 3-15

Jabeuey 1nduj punos m

3-16

CHAPTER 3

Sound Input Manager

interrupt. For example, a sound input device driver that uses the serial port might use a
buffer as small as 3 bytes. For the built-in sound input port on the Macintosh LC and
other Macintosh models, the buffer is 512 bytes long.

Your device driver should update the i oAct Count field of the request parameter block
with the actual number of bytes of sampled-sound data recorded. This allows the Sound
Input Manager to monitor the activity of your device driver. Whether your device driver
operates synchronously or asynchronously, it should complete recording by jumping to
the Device Manager’s | ODone function via the global jump vector J| ODone. You need
to set the DO register to the appropriate result code before jumping to the Device
Manager’s | ODone function.

Supporting Stereo Recording

Many sound input devices support recording stereo sounds (that is, sounds from two or
more channels). If you are writing a device driver for a stereo device, you need to make
sure that you support the si Nunber Channel s, si Acti veChannel s, and

si Acti velLevel s selectors.

The si Nurmber Channel s selector controls the number of sound input channels and
thereby determines the format of the data stream your device driver produces. If the
number of channels is 1, the driver should produce monophonic data in response to a
Read request. If the number of channels is 2, the driver should produce interleaved
stereo data in response to a Read request.

The si Act i veChannel s selector controls which of the available input channels are
used for recording. The active channels are specified using a bitmap value. For example,
the value $01 indicates that the first channel (the left channel) is to be used. The value
$02 indicates that the second channel (the right channel) is to be used.

The si Nurmber Channel s and si Act i veChannel s selectors together determine the
exact format of the output data stream. If the current number of channels is 1 and the
current active channel bitmap is $01, the driver should produce a stream of monophonic
data containing samples only from the left input channel. If the current number of
channels is 1 and the current active channel bitmap is $02, the driver should produce a
stream of monophonic data containing samples only from the right input channel. If the
current number of channels is 1 and the current active channel bitmap is $03, the driver
should mix the right and left channels to produce a stream of monophonic data. If the
current number of channels is 2 and the current active channel bitmap is $03, the driver
should produce a stream of interleaved samples from the left and right input channels.

Note

If the si Act i veChannel s selector is never passed to a sound input
device driver, it's recommended that the active channel default bitmap
for both monophonic and stereo recording should be $03. When the
active channel bitmap conflicts with the number of channels (for
example, there are two channels but the active channel bitmap is $01),
you should use the default value of $03. O

Using the Sound Input Manager

CHAPTER 3

Sound Input Manager

Supporting Continuous Recording

If your sound input device driver supports continuous recording, it must do more than
respond to Status, Control, and Read requests. It must also, if continuous recording is on,
begin recording into an internal ring buffer as soon as a Read request completes. The
buffer should be made large enough so that the sound input device driver can support
successive requests to the SPBRecor d function in most circumstances; however, if your
driver exhausts the internal buffer, your driver should begin recording again at the start
of the buffer.

When the sound input device driver receives a subsequent Read request, it should
record to the application’s buffer first all of the data in the internal ring buffer and then
as much fresh data as it can record during one interrupt.

If a Read terminates due to a Ki | | | Orequest, your sound input device driver does not
need to continue recording samples to the internal ring buffer until after the next
uninterrupted Read request.

Sound Input Manager Reference

Constants

This section describes the constants, data structure, and the routines provided by the
Sound Input Manager.

This section describes the constants you can use with the SPBSet Devi cel nf 0 and
SPBCet Devi cel nf o functions to set or get device information. It also lists the Gest al t
function sound attributes selector and the returned bit numbers that are relevant to the
Sound Input Manager. All other constants defined by the Sound Input Manager are
described at the appropriate location in this chapter. (For example, the constants that you
can use to specify sound recording qualities are described in connection with the
SndRecor d function beginning on page 3-28.)

Gestalt Selector and Response Bits

You can pass the gest al t SoundAt t r selector to the Gest al t function to determine
information about the sound input capabilities of a Macintosh computer.

gest al t SoundAttr ='snd '; {sound attributes sel ector}

The Gest al t function returns information by setting or clearing bits in the r esponse
parameter. The bits relevant to the Sound Input Manager are defined by constants:

Sound Input Manager Reference 3-17

Jabeuey 1nduj punos m

CONST

gest al t Soundl Ovgr Pr esent
gestal t Bui |l t I nSoundl nput
gest al t HasSoundl nput Devi ce
gest al t Pl ayAndRecord =
gestal t 16Bi t Soundl O

gest al t St er eol nput =
gest al tLi neLevel I nput

CHAPTER 3

Sound Input Manager

{sound i nput routines avail abl e}
{built-in input hw avail abl e}

{sound i nput device avail abl e}
{built-in hw can play while recording}
{built-in hw can handl e 16-bit data}
{built-in hw can record stereo sounds}
{built-in input hw needs line |evel}

COoNo O R W

Constant descriptions

gest al t Soundl OMgr Pr esent
Set if the Sound Input Manager is available.

gestal t Bui | t I nSoundl nput
Set if a built-in sound input device is available.

gest al t HasSoundl nput Devi ce
Set if a sound input device is available. This device can be either
built-in or external.

gest al t Pl ayAndRecord
Set if the built-in sound hardware is able to play and record sounds
simultaneously. If this bit is clear, the built-in sound hardware can
either play or record, but not do both at once. This bit is valid only if
the gest al t Bui | t 1 nSoundI nput bit is set, and it applies only to
any built-in sound input and output hardware.

gestal t 16Bi t Soundl O
Set if the built-in sound hardware is able to play and record 16-bit
samples. This indicates that built-in hardware necessary to handle
16-bit data is available.

gest al t St er eol nput
Set if the built-in sound hardware can record stereo sounds.

gestal tLi neLevel | nput
Set if the built-in sound input port requires line level input.

Note

For complete information about the Gest al t function, see the chapter
“Gestalt Manager” in Inside Macintosh: Operating System Utilities. O

Sound Input Device Information Selectors

3-18

You can call the SPBSet Devi cel nf o and SPBGet Devi cel nf o functions to set or
get information about a sound input device. You pass each of those functions a sound
input device information selector in the i nf 0Type parameter to specify the type

of information you need. The available device information selectors are defined

by constants.

Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

IMPORTANT

Some of these selectors are intended for use only by the Sound Input
Manager and other parts of the system software that need to interact
directly with sound input device drivers. (For example, the Sound Input
Manager sends the si Cl oseDr i ver selector to a sound input device
driver when it is closing the device.) In general, applications should not
use these reserved selectors. a

CONST
si Acti veChannel s = 'chac’; {channel s active}
si ActivelLevel s = "l mc'; {level s active}
si AGCOnOf f = '"agc '; {automatic gain control state}
si Async "asyn'; {asynchr onous capability}
si Channel Avai | abl e = 'chav'; {nunber of channel s avail abl e}
si Cl oseDri ver ‘clos'; {reserved for internal use only}
si Conpressi onAvai lable = 'cmav'; {conpression types avail abl e}
si Conpr essi onFact or = 'cnfa'; {current conpression factor}
si Conpr essi onHeader = 'cnhd'; {return conpressi on header}
si Conpr essi onNanes = 'cnam ; {return conpression type nanes}
si Conpr essi onType = 'comp'; {current conpression type}
si Cont i nuous = 'cont'; {conti nuous recording}
si Devi ceBufferlnfo = '"dbin'; {size of interrupt buffer}
si Devi ceConnect ed = '"dcon'; {i nput device connection status}
si Devi cel con "icon'; {input device icon}
si Devi ceNane = 'nane'; {i nput device nane}
silnitializeDriver init'; {reserved for internal use only}
si I nput Gai n = 'gain; {input gain |evel}
si | nput Sour ce = 'sour'; {i nput source selector}
si | nput Sour ceNamnes = 'snam ; {i nput source nanes}
si Level Met er ONOF f ="lnet'; {level neter state}
si Nunber Channel s 'chan'; {current nunber of channel s}
si OptionsDi al og = 'optd'; {di splay options dial og box}
si PauseRecor di ng = ' paus'; {reserved for internal use only}
si Pl ayThruOnOf f ='plth'; {pl ay-t hrough state}
si Recordi ngQual ity = 'qual '; {recording quality}
si Sanpl eRat e = "'srat'; {current sanple rate}
si Sanpl eRat eAvai | abl e = 'srav'; {sanpl e rates avail abl e}
si Sanpl eSi ze = 'ssiz'; {current sanple size}
si Sanpl eSi zeAvai | abl e = 'ssav'; {sanmpl e sizes avail abl e}
si Stereol nput Gai n = 'sgai'; {stereo input gain |evel}
si TwosConpl ement OnCOf f = "twos'; {two's conpl ement st ate}
si User I nterrupt Proc = 'user'; {reserved for internal use only}
si VoxRecordl nfo = 'voxr'; {VOX record paraneters}
si VoxSt opl nfo = 'voxs'; {VOX stop paraneters}

Sound Input Manager Reference 3-19

Jabeuey 1nduj punos m

3-20

CHAPTER 3

Sound Input Manager

Constant descriptions
si Acti veChannel s

si Acti velLevel s

si AGCONOF f

si Async

Get or set the channels to record from. When setting the active
channels, the data passed in is a long integer that is interpreted as a
bitmap describing the channels to record from. For example, if bit 0
is set, then the first channel is made active. The samples for each
active channel are interleaved in the application’s buffer. When
reading the active channels, the data returned is a bitmap of the
active channels.

Get the current signal level for each active channel. The i nf oDat a
parameter points to an array of integers, the size of which depends
on the number of active channels. You can determine how many
channels are active by calling SPBGet Devi cel nf o with the

si Nunber Channel s selector.

Get or set the current state of the automatic gain control feature. The
i nf oDat a parameter points to an integer, which is 0 if gain control
is off and 1 if it is on.

Determine whether the driver supports asynchronous recording
functions. The i nf oDat a parameter points to an integer, which is
0 if the driver supports synchronous calls only and 1 otherwise.
Some sound input drivers do not support asynchronous recording
at all, and some might support asynchronous recording only on
certain hardware configurations.

si Channel Avai | abl e

si C oseDri ver

Get the maximum number of channels this device can record. The
i nf oDat a parameter points to an integer, which is the number of
available channels.

The Sound Input Manager sends this selector when it closes a
device previously opened with write permission. The sound input
device driver should stop any recording in progress, deallocate the
input hardware, and initialize local variables to default settings.
Your application should never issue this selector directly. The

i nf oDat a parameter is unused with this selector.

si Conpr essi onAvai | abl e

Get the number and list of compression types this device can
produce. The i nf oDat a parameter points to an integer, which is
the number of compression types, followed by a handle. The handle
references a list of compression types, each of type OSType.

si Conpr essi onFact or

Get the compression factor of the current compression type. For
example, the compression factor for MACE 3:1 compression is 3. If a
sound input device driver supports only compression type ' NONE',
the returned compression type is 1. The i nf oDat a parameter
points to an integer, which is the compression factor.

si Conpr essi onHeader

Get a compressed sound header for the current recording settings.
Your application passes in a pointer to a compressed sound header

Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

and the driver fills it in. Before calling SPBCet Devi cel nf o with
this selector, you should set the nunfr anes field of the compressed
sound header to the number of bytes in the sound. When

SPBCet Devi cel nf o returns successfully, that field contains the
number of sample frames in the sound. This selector is needed

only by drivers that use compression types that are not directly
supported by Apple. If you call this selector after recording a sound,
your application can get enough information about the sound to
play it or save it in a file. The i nf oDat a parameter points to a
compressed sound header.

si Conpr essi onNanes

Get a list of names of the compression types supported by the
sound input device. In response to a Status call, a sound input
device driver returns, in the location specified by the i nf oDat a
parameter, a handle to a block of memory that contains the names
of all compression types supported by the driver. It is the driver’s
responsibility to allocate that block of memory, but it should not
release it. The software issuing this selector is responsible for
disposing of the handle. As a result, a device driver must detach
any resource handles (by calling Det achResour ce) before
returning them to the caller. The data in the handle has the same
format as an' STR#' resource: a two-byte count of the strings in the
resource, followed by the strings themselves. The strings should
occur in the same order as the compression types returned by the

si Conpr essi onAvai | abl e selector. If the driver does not
support compression, it returns si Unknownl nf oType. If the driver
supports compression but for some reason not all compression
types are currently selectable, it returns a list of all available
compression types.

si Conpr essi onType

si Cont i nuous

Get or set the compression type. Some devices allow the incoming
samples to be compressed before being placed in your application’s
input buffer. The i nf oDat a parameter points to a buffer of type
OSType, which is the compression type.

Get or set the state of continuous recording from this device. If
recording is being turned off, the driver stops recording samples to
its internal buffer. Only sound input device drivers that support
asynchronous recording support continuous recording. The

i nf oDat a parameter points to an integer, which is the state of
continuous recording (0 is off, 1 is on).

si Devi ceBufferlnfo

Get the size of the device’s internal buffer. This information can be
useful when you want to modify sound input data at interrupt time.
Note, however, that if a driver is recording continuously, then the
size of the buffer passed to your sound input interrupt routine
might be greater than the size this selector returns because data
recorded between calls to SPBRecor d as well as recorded during
calls to SPBRecor d will be sent to your interrupt routine. The

i nf oDat a parameter points to a long integer, which is the size of
the device’s internal buffer.

Sound Input Manager Reference 3-21

Jabeuey 1nduj punos m

3-22

CHAPTER 3

Sound Input Manager

si Devi ceConnect ed

si Devi cel con

si Devi ceNane

Get the state of the device connection. The i nf oDat a parameter
points to an integer, which is one of the following constants:

CONST
si Devi cel sConnect ed = 1;
si Devi ceNot Connect ed = 0;
si Dont Knowl f Connect ed = -1;

The si Devi cel sConnect ed constant indicates that the device is
connected and ready. The si Devi ceNot Connect ed constant
indicates that the device is not connected. The

si Dont Knowl f Connect ed constant indicates that the Sound
Input Manager cannot determine whether the device is connected.

Get the device’s icon and icon mask. In response to a Status call, a
sound input device driver should return, in the location specified
by the i nf oDat a parameter, a handle to a block of memory that
contains the icon and its mask in the format of an' | CN#' resource.
It is the driver’s responsibility to allocate that block of memory, but
it should not releasee it. The software issuing this selector is
responsible for disposing of the handle. As a result, a device driver
should detach any resource handles (by calling Det achResour ce)
before returning them to the caller.

Get the name of the sound input device. Your application must pass
a pointer to a buffer that will be filled in with the device’s name.
The buffer needs to be large enough to hold a St r 255 data type.

silnitializeDriver

si I nput Gai n

si | nput Sour ce

The Sound Input Manager sends this selector when it opens a
sound input device with write permission. The sound input device
driver initializes local variables and prepares to start recording. If
possible, the driver initializes the device to a sampling rate of

22 kHz, a sample size of 8 bits, mono recording, no compression,
automatic gain control on, and all other features off. Your
application should never issue this selector directly. The i nf oDat a
parameter is unused with this selector.

Get and set the current sound input gain. If the available hardware
allows adjustment of the recording gain, this selector lets you get
and set the gain. In response to a Status call, a sound input driver
returns the current gain setting. In response to a Control call, a
sound input driver sets the gain level used for all subsequent
recording to the specified value. The i nf oDat a parameter points to
a 4-byte value of type Fi xed ranging from 0.5 to 1.5, where 1.5
specifies maximum gain.

Get and set the current sound input source. If the available
hardware allows recording from more than one source, this selector
lets you get and set the source. In response to a Status call, a sound
input driver returns the current source value; if the driver supports
only one source, it returns si Unknownl nf oType. In response to a
Control call, a sound input driver sets the source of all subsequent

Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

recording to the value passed in. If the value is less than 1 or greater
than the number of input sources, the driver returns par aner r ; if
the driver supports only one source, it returns

si Unknownl nf oType. The i nf oDat a parameter points to an
integer, which is the index of the current sound input source.

si | nput Sour ceNanes

Get a list of the names of all the sound input sources supported by
the sound input device. In response to a Status call, a sound input
device driver returns, in the location specified by the i nf oDat a
parameter, a handle to a block of memory that contains the names
of all sound sources supported by the driver. It is the driver’s
responsibility to allocate that block of memory, but it should not
release it. The software issuing this selector is responsible for
disposing of the handle. As a result, a device driver must detach
any resource handles (by calling Det achResour ce) before
returning them to the caller. The data in the handle has the same
format as an' STR#' resource: a two-byte count of the strings in the
resource, followed by the strings themselves. The strings should
occur in the same order as the input sources returned by the

si | nput Sour ce selector. If the driver supports only one source, it
returns si Unknownl nf oType. If the driver supports more than
one source but for some reason not all of them are currently
selectable, it returns a list of all available input sources.

si Level Met er ONOF f

Get or set the current state of the level meter. For calls to set the
level meter, the i nf oDat a parameter points to an integer that
indicates whether the level meter is off (0) or on (1). To get the level
meter setting, the i nf oDat a parameter points to two integers; the
first integer indicates the state of the level meter, and the second
integer contains the level value of the meter. The level meter setting
is an integer that ranges from 0 (no volume) to 255 (full volume).

si Nunber Channel s

si OptionsDi al og

Get or set the number of channels this device is to record. The

i nf oDat a parameter points to an integer, which indicates the
number of channels. Note that this selector determines the format of
the data stream output by the driver. If the number of channels is 1,
the driver should output monophonic data in response to a Read
call. If the number of channels is 2, the driver should output
interleaved stereo data.

Determine whether the driver supports an Options dialog box
(SPBCet Devi cel nf 0) or cause the driver to display the Options
dialog box (SPBSet Devi cel nf 0). This dialog box is designed to
allow the user to configure device-specific features of the sound
input hardware. With SPBGet Devi cel nf o, the i nf oDat a
parameter points to an integer, which indicates whether the driver
supports an Options dialog box (1 if it supports it, 0 otherwise).
With SPBSet Devi cel nf o, the i nf oDat a parameter is unused.

Sound Input Manager Reference 3-23

Jabeuey 1nduj punos m

3-24

CHAPTER 3

Sound Input Manager

si PauseRecor di ng
The Sound Input Manager uses this selector to get or set the current
pause state. The sound input device driver continues recording but
does not store the sampled data in a buffer. Your application should
never issue this selector directly. The i nf oDat a parameter points
to an integer, which indicates the state of pausing (0 is off, 1 is on).

si Pl ayThruOnOf f
Get or set the current play-through state and volume. The
i nf oDat a parameter points to an integer, which indicates the
current play-through volume (1 to 7). If that integer is 0, then
play-through is off.

si Recordi ngQual ity
Get or set the current quality of recorded sound. The i nf oDat a
parameter points to a buffer of type OSType, which is the recording
quality. Currently three qualities are supported, defined by these

constants:

CONST
siBestQual ity = 'best"';
siBetterQuality = 'betr';
si GoodQual ity = 'good';

These qualities are defined by the sound input device driver.
Usually best means monaural, 8-bit, 22 kHz, sound with no
compression.

si Sanpl eRat e Get or set the sample rate to be produced by this device. The sample
rate must be in the range 0 to 65535.65535 Hz. The sample rate is
declared as a Fi xed data type. In order to accommodate sample
rates greater than 32 kHz, the most significant bit is not treated as a
sign bit; instead, that bit is interpreted as having the value 32,768.
The i nf oDat a parameter points to a buffer of type Fi xed, which is
the sample rate.

si Sanpl eRat eAvai | abl e
Get the range of sample rates this device can produce. The
i nf oDat a parameter points to an integer, which is the number of
sample rates the device supports, followed by a handle. The handle
references a list of sample rates, each of type Fi xed. If the device
can record a range of sample rates, the number of sample rates is set
to 0 and the handle contains two rates, the minimum and the
maximum of the range of sample rates. Otherwise, a list is returned
that contains the sample rates supported. In order to accommodate
sample rates greater than 32 kHz, the most significant bit is not
treated as a sign bit; instead, that bit is interpreted as having the
value 32,768.

si Sanpl eSi ze Get or set the sample size to be produced by this device. Because
some compression formats require specific sample sizes, this
selector might return an error when compression is used. The
i nf oDat a parameter points to an integer, which is the sample size.

Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

si Sanpl eSi zeAvai | abl e

Get the range of sample sizes this device can produce. The

i nf oDat a parameter points to an integer, which is the number of
sample sizes the device supports, followed by a handle. The handle
references a list of sample sizes, each of type | nt eger.

si St er eol nput Gai n

Get and set the current stereo sound input gain. If the available
hardware allows adjustment of the recording gain, this selector lets
you get and set the gain for each of two channels (left or right). In
response to a Status call, a sound input driver should return the
current gain setting for the specified channel. In response to a
Control call, a sound input driver should set the gain level used for
all subsequent recording to the specified value. The i nf oDat a
parameter points to two 4-byte values of type Fi xed ranging from
0.5 to 1.5, where 1.5 specifies maximum gain. The first of these
values is equivalent to the gain for the left channel and the second
value is equivalent to the gain for the right channel.

si TwosConpl enment OnCOf f

Get or set the current state of the two’s complement feature. This
selector only applies to 8-bit data. (16-bit samples are always stored
in two’s complement format.) If on, the driver stores all samples in
the application buffer as two’s complement values (that is, =128 to
127). Otherwise, the driver stores the samples as offset binary
values (that is, 0 to 255). The i nf oDat a parameter points to an
integer, which is the current state of the two’s complement feature
(1 if two’s complement output is desired, 0 otherwise).

si UserlInterruptProc

si VoxRecordl nfo

si VoxSt opl nfo

The Sound Input Manager sends this selector to specify the sound
input interrupt routine that the sound input device driver should
call. Your application should never issue this selector directly. The
i nf oDat a parameter points to a procedure pointer, which is the
address of the sound input interrupt routine.

Get or set the current VOX recording parameters. The i nf oDat a
parameter points to two integers. The first integer indicates whether
VOX recording is on or off (0 if off, 1 if on). The second integer
indicates the VOX record trigger value. Trigger values range from

0 to 255 (0 is trigger immediately, 255 is trigger only on full volume).

Get or set the current VOX stopping parameters. The i nf oDat a
parameter points to three integers. The first integer indicates
whether VOX stopping is on or off (0 if off, 1 if on). The second
integer indicates the VOX stop trigger value. Trigger values range
from 0 to 255 (255 is stop immediately, 0 is stop only on total
silence). The third integer indicates how many milliseconds the
trigger value must be continuously valid for recording to be
stopped. Delay values range from 0 to 65,535.

Sound Input Manager Reference 3-25

Jabeuey 1nduj punos m

CHAPTER 3

Sound Input Manager

Data Structures

This section describes the sound input parameter block.

Sound Input Parameter Blocks

TYPE SPB =
RECORD

The SPBRecor d and SPBRecor dToFi | e functions require a pointer to a sound input
parameter block that defines characteristics of the recording. If you define a sound input
completion routine or a sound input interrupt routine, your routine receives a pointer
to a sound input parameter block. If you are using only the Sound Input Manager’s
high-level SndRecor d and SndRecor dToFi | e functions, the operation of sound input
parameter blocks is transparent to your application. A sound input parameter block is
defined by the SPB data type.

i nRef Num

count:

mlliseconds:
buf f er Lengt h:
bufferPtr:

conpl et

onRout i ne:

i nterrupt Routi ne:
user Long:

error:
unusedl:
END;

3-26

Field descriptions
i nRef Num

count

mlliseconds

buf f er Lengt h

bufferPtr

Longl nt; {reference nunber of input device}
Longl nt; {nunber of bytes to record}

Longl nt; {nunber of mlliseconds to record}
Longl nt; {length of buffer to record into}
Ptr; {pointer to buffer to record into}
ProcPtr; {pointer to a conpletion routine}
ProcPtr; {pointer to an interrupt routine}
Longl nt; {for application's use}

OSErr; {error returned after recording}
Longl nt; {reserved}

The reference number of the sound input device (as received from
the SPBOpenDevi ce function) from which the recording is to occur.

On input, the number of bytes to record. On output, the number of
bytes actually recorded. If this field specifies a longer recording time
than the m | | i seconds field, then the i | | i seconds field is
ignored on input.

On input, the number of milliseconds to record. On output, the
number of milliseconds actually recorded. If this field specifies a
longer recording time than the count field, then the count field is
ignored on input.

The length of the buffer into which recorded sound data is placed.
The recording time specified by the count ormi | | i seconds field
is truncated to fit into this length, if necessary.

A pointer to the buffer into which recorded data is placed. If this
field is NI L, then the count , mi | | i seconds, and buf f er Lengt h
fields are ignored and the recording will continue indefinitely until
the SPBSt opRecor di ng function is called. However, the data is

Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

not stored anywhere, so setting this field to NI L is useful only if you
want to do something in a sound input interrupt routine but do not
want to save the recorded sound.

conpl eti onRout i ne

A pointer to a completion routine that is called when the recording
terminates as a result of your calling the SPBSt opRecor di ng
function or when the limit specified by the count or

m | | i seconds field is reached. The completion routine executes
only if SPBRecor d is called asynchronously and therefore is called
at interrupt time.

i nterrupt Routine

user Long

error

unusedl

A pointer to a routine that is called by asynchronous recording
devices when their internal buffers are full. You can define a sound
input interrupt routine to modify uncompressed sound samples
before they are placed into the buffer specified in the buf f er Pt r
parameter. The interrupt routine executes only if SPBRecor d is
called asynchronously and therefore is called at interrupt time.

Along integer available for the application’s own use. You can use
this field, for instance, to pass a handle to an application-defined
structure to the completion routine or to the interrupt routine.

On exit, the error that occurred during recording. This field contains
a value greater than 0 while recording unless an error occurs, in
which case it contains a value less than 0 that indicates an operating
system error. Your application can poll this field to check on the
status of an asynchronous recording. If recording terminates
without an error, this field contains 0.

Reserved for use by Apple. You should always initialize this
field to 0.

Sound Input Manager Routines

This section describes the routines provided by the Sound Input Manager. You can use

these routines to

= record sounds using the sound recording dialog box

= open and close sound input devices

= record sounds directly from sound input devices

= get information about sound input devices and change device settings

» construct sound resource and file headers

= register sound input devices with the Sound Input Manager

= convert recording times between millisecond and byte values

= obtain information about the version of the Sound Input Manager that is running

The section “Application-Defined Routines” on page 3-53 describes the format of sound
input completion routines and sound input interrupt routines.

Sound Input Manager Reference

3-27

Jabeuey 1nduj punos m

CHAPTER 3

Sound Input Manager

Recording Sounds

SndRecord

The Sound Input Manager provides two high-level sound input functions, SndRecor d
and SndRecor dToFi | e, for recording sound. These input routines are analogous to the
two Sound Manager functions SndPl ay and SndSt ar t Fi | ePl ay. By using these
high-level routines, you can be assured that your application presents a user interface
that is consistent with that displayed by other applications doing sound input. Both
SndRecor d and SndRecor dToFi | e attempt to record sound data from the sound
input hardware currently selected in the Sound In control panel.

DESCRIPTION

3-28

You can use the SndRecor d function to record sound resources into memory.

FUNCTI ON SndRecord (filterProc: ProcPtr; corner: Point;
quality: OSType; VAR sndHandl e: Handl e):
OSErr;

filterProc
A pointer to an event filter function that determines how user actions in
the sound recording dialog box are filtered (similar to thefi | t er Proc
parameter specified in a call to the Mbdal Di al og procedure). By
specifying your own filter function, you can override or add to the
default actions of the items in the dialog box. If fi | t er Proc isnt NI L,
SndRecor d filters events by calling the function thatfi | t er Proc
points to.

cor ner The horizontal and vertical coordinates of the upper-left corner of the
sound recording dialog box (in global coordinates).

quality The desired quality of the recorded sound.

sndHandl e On entry, a handle to some storage space or NI L. On exit, a handle to a
valid sound resource (or unchanged, if the call did not execute
successfully).

The SndRecor d function records sound into memory. The recorded data has the
structure of a format1' snd ' resource and can later be played using the SndPI ay
function or can be stored as a resource. SndRecor d displays a sound recording dialog
box and is always called synchronously. Controls in the dialog box allow the user to
start, stop, pause, and resume sound recording, as well as to play back the recorded
sound. The dialog box also lists the remaining recording time and the current
microphone sound level.

The qual i t y parameter defines the desired quality of the recorded sound. Currently,
three values are recognized for the qual i t y parameter:

Sound Input Manager Reference

RESULT CODES

CHAPTER 3

Sound Input Manager

CONST
siBestQuality = ' best"'; {the best quality avail abl e}
siBetterQuality = "betr'; {a quality better than good}
si GoodQual ity = 'good'; {a good quality}

The precise meanings of these parameters are defined by the sound input device driver.
For Apple-supplied drivers, this parameter determines whether the recorded sound is to
be compressed, and if so, whether at a 6:1 or a 3:1 ratio. The quality si Best Qual i ty
does not compress the sound and provides the best quality output, but at the expense of
increased memory use. The quality si Bet t er Qual i t'y is suitable for most nonvoice
recording, and si GoodQual i ty is suitable for voice recording.

The sndHandl e parameter is a handle to some storage space. If the handle is NI L, the
Sound Input Manager allocates a handle of the largest amount of space that it can find in
your application’s heap and returns this handle in the sndHandl e parameter. The
Sound Input Manager resizes the handle when the user clicks the Save button in the
sound recording dialog box. If the sndHandl| e parameter passed to SndRecor d is not
NI L, the Sound Input Manager simply stores the recorded data in the location specified
by that handle.

SPECIAL CONSIDERATIONS

Because the SndRecor d function moves memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndRecor d function are

Trap macro Selector
_SoundDi spat ch $08040014

noErr 0 No error

user Cancel edErr -128 User canceled the operation
si BadSoundl| nDevi ce -221 Invalid sound input device
si UnknownQual i ty -232 Unknown quality

See the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials for a
complete description of event filter functions.

Sound Input Manager Reference 3-29

Jabeuey 1nduj punos m

CHAPTER 3

Sound Input Manager

SndRecordToFile

DESCRIPTION

You can use SndRecor dToFi | e to record sound data into a file.

FUNCTI ON SndRecordToFile (filterProc: ProcPtr; corner: Point;
quality: OSType;
fRef Num Integer): OSErr;

filterProc
A pointer to a function that determines how user actions in the sound
recording dialog box are filtered.

cor ner The horizontal and vertical coordinates of the upper-left corner of the
sound recording dialog box (in global coordinates).

quality The desired quality of the recorded sound, as described on page 3-28.

f Ref Num The file reference number of an open file to save the audio data in.

The SndRecor dToFi | e function works just like SndRecor d except that it stores the
sound input data into a file. The resulting file is in either AIFF or AIFF-C format and
contains the information necessary to play the file by using the Sound Manager’s
SndSt art Fi | ePl ay function. The SndRecor dToFi | e function is always called
synchronously.

Your application must open the file specified in the f Ref Numparameter before calling
the SndRecor dToFi | e function. Your application must close the file sometime after
calling SndRecor dToFi | e.

SPECIAL CONSIDERATIONS

Because the SndRecor dToFi | e function moves memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

3-30

The trap macro and routine selector for the SndRecor dToFi | e function are

Trap macro Selector
_SoundDi spat ch $07080014

noErr 0 No error

user Cancel edErr -128 User canceled the operation
si BadSoundl| nDevi ce -221 Invalid sound input device
si UnknownQual i ty -232 Unknown quality

Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

Opening and Closing Sound Input Devices

You can use the SPBOpenDevi ce function to open the default sound input device that
the user has selected in the Sound In control panel or to open a specific sound input
device. You must open a device before you can record from it by using SPBRecor d, but
the Sound Input Manager’s high-level routines automatically open the default sound
input device. You can close a sound input device by calling the SPBC oseDevi ce
function.

SPBOpenDevice

DESCRIPTION

You can use the SPBOpenDevi ce function to open a sound input device.

FUNCTI ON SPBOpenDevi ce (devi ceName: Str255; pernission: |nteger;
VAR i nRef Num Longlnt): OSErr;

devi ceNane
The name of the sound input device to open, or the empty string if the
default sound input device is to be opened.

per m ssi on
A flag that indicates whether subsequent operations with that device are
to be read / write or read-only.

i NRef Num On exit, if the function is successful, a device reference number for the
open sound input device.

The SPBOpenDevi ce function attempts to open a sound input device having the name
indicated by the devi ceNane parameter. If SPBOpenDevi ce succeeds, it returns a
device reference number in the i nRef Numparameter. The per mi ssi on parameter
indicates whether subsequent operations with that device are to be read / write or
read-only. If the device is not already in use, read / write permission is granted;
otherwise, only read-only operations are allowed. To make any recording requests or to
call the SPBSet Devi cel nf o function, read / write permission must be available. Use
these constants to request the appropriate permission:

CONST
si ReadPer m ssi on = 0; {open device for reading}
si WitePerm ssion = 1; {open device for reading/witing}

You can request that the current default sound input device be opened by passing either
a zero-length string or a NI L string as the devi ceName parameter. If only one sound
input device is installed, that device is used. Generally you should open the default
device unless you specifically want to use some other device. You can get a list of the
available devices by calling the SPBGet | ndexedDevi ce function.

Sound Input Manager Reference 3-31

Jabeuey 1nduj punos m

CHAPTER 3

Sound Input Manager

SPECIAL CONSIDERATIONS

Because the SPBOpenDevi ce function allocates memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBOpenDevi ce function are

Trap macro Selector
_SoundDi spat ch $05180014

RESULT CODES
noErr 0 No error
per nerr -54 Device already open for writing
si BadDevi ceNane -228 Invalid device name

SPBCloseDevice

You can use the SPBC oseDevi ce function to close a sound input device.
FUNCTI ON SPBCI oseDevi ce (i nRefNum Longlint): OSErr;

i nNRef Num The device reference number of the sound input device to close.

DESCRIPTION

The SPBC oseDevi ce function closes a device that was previously opened by
SPBOpenDevi ce and whose device reference number is specified in the
i NRef Numparameter.

SPECIAL CONSIDERATIONS

Because the SPBC oseDevi ce function moves or purges memory, you should not call it
at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBCl oseDevi ce function are

Trap macro Selector
_SoundDi spat ch $021C0014

3-32 Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

RESULT CODES

noErr
si BadRef Num

0 No error

-229 Invalid reference number

Recording Sounds Directly From Sound Input Devices

The Sound Input Manager provides a number of routines that allow you to begin, pause,
resume, and stop recording directly from a sound input device. These low-level routines
do not display the sound recording dialog box to the user.

SPBRecord

You can use the SPBRecor d function to record audio data into memory, either
synchronously or asynchronously.

FUNCTI ON SPBRecord (i nParanftr:

i nPar anPtr

CSErr;

SPBPt r; asynchFl ag: Bool ean):

A pointer to a sound input parameter block.

asynchFl ag

A Boolean value that specifies whether the recording occurs
asynchronously (TRUE) or synchronously (FALSE).

You specify values and receive return values in the sound input parameter block.

Parameter block

- i nRef Num Longl nt
- count Longl nt
o m | 1iseconds Longl nt
- buf f er Lengt h Longl nt
- bufferPtr Ptr

- conpl eti onRout i ne ProcPtr

- i nterrupt
o user Long
- error

5 unusedl

Field descriptions
i nRef Num

count

Rout i ne ProcPtr
Longl nt
OSEr r
Longl nt

A reference number of a sound input
device.

The number of bytes of recording.
The number of milliseconds of
recording.

The length of the buffer beginning at
bufferpPtr.

A pointer to a buffer for sampled-sound
data.

A pointer to a completion routine.

A pointer to an interrupt routine.
Free for application’s use.

The error value returned after recording.

Reserved.

The device reference number of the sound input device, as obtained
from the SPBOpenDevi ce function.

On input, the number of bytes to record. If this field indicates a
longer recording time than the mi | | i seconds field, then the

Sound Input Manager Reference

3-33

Jabeuey 1nduj punos m

DESCRIPTION

3-34

CHAPTER 3

Sound Input Manager

mlliseconds

buf f er Lengt h

bufferPtr

m | | i seconds field is ignored. On output, this field indicates the
number of bytes actually recorded.

On input, the number of milliseconds to record. If this field
indicates a longer recording time than the count field, then the
count field is ignored. On output, this field indicates the number of
milliseconds actually recorded.

The number of bytes in the buffer specified by the buf fer Pt r
parameter. If this buffer length is too small to contain the amount of
sampled-sound data specified in the count and mi | | i seconds
fields, then recording time is truncated so that the sampled-sound
data fits in the buffer.

A pointer to the buffer for the sampled-sound data, or NI L if you
wish to record sampled-sound data without saving it. On exit, this
buffer contains the sampled-sound data, which is interleaved for
stereo sound on a sample basis (or on a packet basis if the data is
compressed). This buffer contains only sampled-sound data, so if
you need a sampled sound header, you should set that up in a
buffer before calling SPBRecor d and then record into the buffer
following the sound header.

conpl eti onRouti ne

A pointer to a completion routine. This routine is called when the
recording terminates (either after you call the SPBSt opRecor di ng
function or when the prescribed limit is reached). The completion
routine is called only for asynchronous recording.

i nterrupt Routine

user Long

error

unusedl

A pointer to an interrupt routine. The interrupt routine specified in
the i nt er rupt Rout i ne field is called by asynchronous recording
devices when their internal buffers are full.

Along integer that your application can use to pass data to your
application’s completion or interrupt routines.

On exit, a value greater than 0 while recording unless an error
occurs, in which case it contains a value less than 0 that indicates an
operating system error. Your application can poll this field to check
on the status of an asynchronous recording. If recording terminates
without an error, this field contains 0.

Reserved. You should set this field to 0 before calling SPBRecor d.

The SPBRecor d function starts recording into memory from a device specified in a
sound input parameter block. The sound data recorded is stored in the buffer specified
by the buf f er Pt r and buf f er Lengt h fields of the parameter block. Recording lasts
the longer of the times specified by the count and mi | | i seconds fields of the
parameter block, or until the buffer is filled. Recording is asynchronous if the
asynchFl ag parameter is TRUE and the specified sound input device supports
asynchronous recording.

Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

If the buf f er Pt r field of the parameter block contains NI L, then the count,

m | | i seconds, and buf f er Lengt h fields are ignored, and the recording continues
indefinitely until you call the SPBSt opRecor di ng function. In this case, the audio data
is not saved anywhere; this feature is useful only if you want to do something in your
interrupt routine and do not want to save the audio data. However, if the recording is
synchronous and buf f er Pt r is NI L, SPBRecor d returns the result code

si NoBuf f er Speci fi ed.

The SPBRecor d function returns the value that the er r or field of the parameter block
contains when recording finishes.

SPECIAL CONSIDERATIONS
You can call the SPBRecor d function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBRecor d function are

Trap macro Selector
_SoundDi spat ch $03200014

RESULT CODES
noErr 0 No error
si NoSoundl nHar dwar e —220 No sound input hardware available
si BadSoundI nDevi ce 221 Invalid sound input device
si NoBuf f er Speci fi ed -222 No buffer specified
si Devi ceBusyErr -227 Sound input device is busy
SEE ALSO

For an example of the use of the SPBRecor d function, see Listing 3-1.

SPBRecordToFile

You can use the SPBRecor dToFi | e function to record audio data into a file, either
synchronously or asynchronously.

FUNCTI ON SPBRecor dToFile (fRef Num |Integer; inParanPtr: SPBPtr;
asynchFl ag: Bool ean): OSErr;

f Ref Num The file reference number of an open file in which to place the recorded
sound data.

i nParanPtr
A pointer to a sound input parameter block.

Sound Input Manager Reference 3-35

Jabeuey 1nduj punos m

3-36

CHAPTER 3

Sound Input Manager

asynchFl ag

A Boolean value that specifies whether the recording occurs
asynchronously (TRUE) or synchronously (FALSE).

Parameter block

- i nRef Num Longl nt A reference number of a sound input
device.

- count Longl nt The number of bytes of recording.

o mlliseconds Longl nt The number of milliseconds of
recording.

. conpl eti onRout i ne ProcPtr A pointer to a completion routine.

= i nterrupt Routi ne ProcPtr Unused.

- user Long Longl nt Free for application’s use.

- error OSErr The error value returned after recording.

= unusedl Longl nt Reserved.

Field descriptions
i nRef Num

count

mlliseconds

The device reference number of the sound input device, as obtained
from the SPBOpenDevi ce function.

On input, the number of bytes to record. If this field indicates a
longer recording time than the mi | | i seconds field, then the

m | | i seconds field is ignored. On output, the number of bytes
actually recorded.

On input, the number of milliseconds to record. If this field
indicates a longer recording time than the count field, then the
count field is ignored. On output, the number of milliseconds
actually recorded.

conpl eti onRouti ne

A pointer to a completion routine. This routine is called when the
recording terminates (after you call the SPBSt opRecor di ng
function, when the prescribed limit is reached, or after an error
occurs). The completion routine is called only for asynchronous
recording.

i nterrupt Routine

user Long

error

unusedl

Unused. You should set this field to NI L before calling
SPBRecor dToFi | e.

Along integer that your application can use to pass data to your
application’s completion or interrupt routines.

On exit, the error that occurred during recording. This field contains
the number 1 while recording unless an error occurs, in which case
it contains a value less than 0 that indicates an operating system
error. Your application can poll this field to check on the status of an
asynchronous recording. If recording terminates without an error,
this field contains 0.

Reserved. You should set this field to 0 before calling the
SPBRecor dToFi | e function.

Sound Input Manager Reference

DESCRIPTION

CHAPTER 3

Sound Input Manager

The SPBRecor dToFi | e function starts recording from the specified device into a file.
The sound data recorded is simply stored in the file, so it is up to your application to
insert whatever headers are needed to play the sound with the Sound Manager. Your
application must open the file specified by the f Ref Numparameter with write access
before calling SPBRecor dToFi | e, and it must eventually close that file.

The fields in the parameter block specified by the i nPar anPt r parameter are identical
to the fields in the parameter block passed to the SPBRecor d function, except that the
buf f er Lengt h and buf f er Pt r fields are not used. The i nt er r upt Rout i ne field is
ignored by SPBRecor dToFi | e because SPBRecor dToFi | e copies data returned by the
sound input device driver to disk during the sound input interrupt routine, but you
should initialize this field to NI L.

The SPBRecor dToFi | e function writes samples to disk in the same format that they are
read in from the sound input device. If compression is enabled, then the samples written
to the file are compressed. Multiple channels of sound are interleaved on a sample basis
(or, for compressed sound data, on a packet basis). When you are recording 8-bit audio
data to an Al FF file, you must set the si TwosConpl enent OnOf f flag to so that the
data is stored on disk in the two’s-complement format. If you don’t store the data in this
format, it sounds distorted when you play it back.

If any errors occur during the file writing process, recording is suspended. All File
Manager errors are returned through the function’s return value if the routine is called
synchronously. If the routine is called asynchronously and the completion routine is not
NI L, the completion routine is called and is passed a single parameter on the stack that
points to the sound input parameter block; any errors are returned in the er r or field of
the sound input parameter block.

The SPBRecor dToFi | e function returns the value that the err or field of the parameter
block contains when recording finishes.

SPECIAL CONSIDERATIONS

Because the SPBRecor dToFi | e function moves or purges memory, you should not call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBRecor dToFi | e function are

Trap macro Selector
_SoundDi spat ch $04240014

Sound Input Manager Reference 3-37

Jabeuey 1nduj punos m

CHAPTER 3

Sound Input Manager

RESULT CODES
noErr 0 No error
per nerr -54 Attempt to open locked file for writing
si NoSound| nHar dwar e -220 No sound input hardware available
si BadSoundl nDevi ce 221 Invalid sound input device
si Har dDri veTooS| ow —224 Hard drive too slow to record

SPBPauseRecording

You can use the SPBPauseRecor di ng function to pause recording from a sound input
device.

FUNCTI ON SPBPauseRecor di ng (i nRef Num Longlnt): OSErr;

i nRef Num The device reference number of the sound input device, as obtained from
the SPBOpenDevi ce function.

DESCRIPTION

The SPBPauseRecor di ng function pauses recording from the device specified by
the i nRef Numparameter. The recording must be asynchronous for this call to have
any effect.

SPECIAL CONSIDERATIONS
You can call the SPBPauseRecor di ng function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBPauseRecor di ng function are

Trap macro Selector
_SoundDi spat ch $02280014

RESULT CODES

noErr 0 No error
si BadSoundl| nDevi ce -221 Invalid sound input device

3-38 Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

SPBResumeRecording

You can use the SPBResunmeRecor di ng function to resume recording from a sound
input device.

FUNCTI ON SPBResuneRecordi ng (i nRef Num Longlnt): OSErr;

i nRef Num The device reference number of the sound input device, as obtained from
the SPBOpenDevi ce function.

DESCRIPTION

The SPBResunmeRecor di ng function resumes recording from the device specified by
the i nRef Numparameter. Recording on that device must previously have been paused
by a call to the SPBPauseRecor di ng function for SPBResuneRecor di ng to have
any effect.

SPECIAL CONSIDERATIONS
You can call the SPBResuneRecor di ng function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBResuneRecor di ng function are

Trap macro Selector
_SoundDi spat ch $022C0014

RESULT CODES

noErr 0 No error
si BadSoundl| nDevi ce -221 Invalid sound input device

SPBStopRecording

You can use the SPBSt opRecor di ng function to end a recording from a sound input
device.

FUNCTI ON SPBSt opRecordi ng (i nRef Num Longlint): OSErr;

i nRef Num The device reference number of the sound input device, as obtained from
the SPBOpenDevi ce function.

Sound Input Manager Reference 3-39

Jabeuey 1nduj punos m

CHAPTER 3

Sound Input Manager

DESCRIPTION

The SPBSt opRecor di ng function stops recording from the device specified by the

i nRef Numparameter. The recording must be asynchronous for SPBSt opRecor di ng

to have any effect. When you call SPBSt opRecor di ng, the sound input completion
routine specified in the conpl et i onRout i ne field of the sound input parameter block
is called and the er r or field of that parameter block is set to abor t Er r. If you are
writing a device driver, you will receive a Ki | | | OSt at us call. See the section “Writing
a Sound Input Device Driver” beginning on page 3-13 for more information.

SPECIAL CONSIDERATIONS
You can call the SPBSt opRecor di ng function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBSt opRecor di ng function are

Trap macro Selector
_SoundDi spat ch $02300014

RESULT CODES

noErr 0 No error
si BadSoundl nDevi ce -221 Invalid sound input device

SPBGetRecordingStatus

You can use SPBGet Recor di ngSt at us to obtain recording status information about a
sound input device.

FUNCTI ON SPBGet Recor di ngSt atus (i nRef Num Longl nt;
VAR recordi ngSt atus: I nteger;
VAR net erLevel : |nteger;
VAR t ot al Sanpl esToRecord: Longlnt;
VAR nunber O Sanpl esRecor ded: Longl nt;
VAR t ot al MsecsToRecord: Longl nt;
VAR nunber Of MsecsRecorded: Longlnt):
OSErr;

i nRef Num The device reference number of the sound input device, as obtained from
the SPBOpenDevi ce function.

recordi ngSt at us
The status of the recording. While the input device is recording, this
parameter is set to a number greater than 0. When a recording terminates
without an error, this parameter is set to 0. When an error occurs during

3-40 Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

recording or the recording has been terminated by a call to the
SPBSt opRecor di ng function, this parameter is less than 0 and contains
an error code.

met er Level
The current input signal level. This level ranges from 0 to 255.

t ot al Sanpl esToRecor d
The total number of samples to record, including those samples
already recorded.

nunber O Sanpl esRecor ded
The number of samples already recorded.

tot al MsecsToRecord
The total duration of recording time, including recording time
already elapsed.

number Of MsecsRecor ded
The amount of recording time that has elapsed.

DESCRIPTION

The SPBCet Recor di ngSt at us function returns, in its second through seventh
parameters, information about the recording on the device specified by the i nRef Num
parameter.

SPECIAL CONSIDERATIONS
You can call the SPBGet Recor di ngSt at us function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBGet Recor di ngSt at us function are

Trap macro Selector
_SoundDi spat ch $0E340014

RESULT CODES

noErr 0 No error
si BadSoundl nDevi ce -221 Invalid sound input device

Manipulating Device Settings

You can use the two functions SPBGet Devi cel nf o and SPBSet Devi cel nf o to read
and change the settings of a sound input device.

Sound Input Manager Reference 3-41

Jabeuey 1nduj punos m

CHAPTER 3

Sound Input Manager

SPBGetDevicelnfo

DESCRIPTION

You can use the SPBGet Devi cel nf o function to get information about the settings of a
sound input device.

FUNCTI ON SPBCet Devi cel nfo (i nRef Num Longlnt; infoType: OSType;
i nfoData: Ptr): OSErr;

i nRef Num The device reference number of the sound input device, as obtained from
the SPBOpenDevi ce function.

infoType Asound input device information selector that specifies the type of
information you need.

infoData A pointer to a buffer in which information should be returned. This buffer
must be large enough for the type of information specified in the
i nf oType parameter.

The SPBCet Devi cel nf o function returns information about the sound input device
specified by the i nRef Numparameter. The type of information you want is specified in
the i nf 0Type parameter. The available sound input device information selectors are
listed in “Sound Input Device Information Selectors” beginning on page 3-18. The
information is copied into the buffer specified by the i nf oDat a parameter.

SPECIAL CONSIDERATIONS

Because the SPBGet Devi cel nf o function might move memory, you should not call it
at interrupt time. Check the selector description of the selector you want to use to see if it
moves memory before calling the SPBGet Devi cel nf o function. Most of the selectors
do not move memory and are therefore safe to use at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

3-42

The trap macro and routine selector for the SPBGet Devi cel nf o function are

Trap macro Selector
_SoundDi spat ch $06380014

noErr 0 No error

si BadSoundIl nDevi ce —221 Invalid sound input device

si Unknownl nf oType -231 Unknown type of information
Sound Input Manager Reference

SEE ALSO

CHAPTER 3

Sound Input Manager

Listing 3-2 on page 3-12 shows an example that uses the SPBGet Devi cel nf o function
to get the name of a sound input device driver.

SPBSetDevicelnfo

DESCRIPTION

You can use the SPBSet Devi cel nf o function to set information in a sound input
device.

FUNCTI ON SPBSet Devi cel nfo (i nRef Num Longlnt; infoType: OSType;
infoData: Ptr): OSErr;

i nRef Num The device reference number of the sound input device, as obtained from
the SPBOpenDevi ce function.

infoType Asound input device information selector that specifies the type of
information you need.

infoData A pointer to a buffer. This buffer can contain information on entry, and
information might be returned on exit. This buffer must be large enough
for the type of information specified in the i nf 0Type parameter, and the
data in the buffer must be set to appropriate values if information needs
to be passed in to the SPBSet Devi cel nf o function.

The SPBSet Devi cel nf o function sets information about the sound input device
specified by the i nRef Numparameter, based on the data in the buffer specified by the
i nf oDat a parameter.

The type of setting you wish to change is specified in the i nf 0Type parameter. The
sound input device information selectors are listed in “Sound Input Device Information
Selectors” beginning on page 3-18.

SPECIAL CONSIDERATIONS

Because the SPBSet Devi cel nf o function might move memory, you should not call it
at interrupt time. Check the selector description of the selector you want to use to see if it
moves memory before calling the SPBGet Devi cel nf o function. Most of the selectors
do not move memory and are therefore safe to use at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBSet Devi cel nf o function are

Trap macro Selector
_SoundDi spat ch $063C0014

Sound Input Manager Reference 3-43

Jabeuey 1nduj punos m

RESULT CODES

CHAPTER 3

Sound Input Manager

noErr 0 No error

per nerr -54 Attempt to open locked file for writing
si BadSoundl| nDevi ce -221 Invalid sound input device

si Devi ceBusyErr —227 Sound input device is busy

si Unknownl nf oType -231 Unknown type of information

Constructing Sound Resource and File Headers

The Sound Input Manager provides two functions, Set upSndHeader and

Set upAl FFHe

SetupSndHeader

ader, to help you set up headers for sound resources and sound files.

3-44

You can use the Set upSndHeader function to construct a sound resource containing
sampled sound that can be passed to the SndPl ay function.

FUNCTI ON Set upSndHeader (sndHandl e: Handl e;

sndHandl e

nuntChannel s

sanpl eRat e

sanpl eSi ze

nuntChannel s: | nteger;

sanpl eRat e: Fi xed,;

sampl eSi ze: Integer;

conpressi onType: OSType;
baseFrequency: |nteger;

nunByt es: Longl nt;

VAR headerLen: Integer): OSErr;

A handle to a block of memory that is at least large enough to store the
sound resource header information. The handle is not resized in any way
upon successful completion of Set upSndHeader . The

Set upSndHeader function simply fills the relocatable block specified by
this parameter with the header information needed for a format 1

"snd ' resource, including the sound resource header, the list of sound
commands, and a sampled sound header. It is your application’s
responsibility to append the desired sampled-sound data.

The number of channels for the sound; one channel is equivalent to
monaural sound and two channels are equivalent to stereo sound.

The rate at which the sound was recorded. The sample rate is declared as
a Fi xed data type. In order to accommodate sample rates greater than

32 kHz, the most significant bit is not treated as a sign bit; instead, that bit
is interpreted as having the value 32,768.

The sample size for the original sound (that is, bits per sample).

Sound Input Manager Reference

DESCRIPTION

CHAPTER 3

Sound Input Manager

conpressi onType
The compression type for the sound (' NONE' , ' MAC3' ,"' MACE', or other
third-party types).
baseFr equency
The base frequency for the sound, expressed as a MIDI note value.
nunmBytes The number of bytes of audio data that are to be stored in the handle.
(This value is not necessarily the same as the number of samples in
the sound.)

header Len On exit, the size (in bytes) of the' snd ' resource header that is created.
In no case will this length exceed 100 bytes. This field allows you to put
the audio data right after the header in the relocatable block specified by
the sndHandl| e parameter. The value returned depends on the type of
sound header created.

The Set upSndHeader function creates a format1' snd ' resource for a sampled
sound. The resource contains a sound resource header that links the sound to the
sampled synthesizer, a single sound command (a buf f er Cnd command to play the
accompanying data), and a sampled sound header. You can use Set upSndHeader to
construct a sampled sound header that can be passed to the Sound Manager’s SndPI ay
function or stored as an' snd ' resource. After calling the Set upSndHeader function,
your application should place the sampled-sound data directly after the sampled sound
header so that, in essence, the sampled sound header’s final field contains the

sound data.

The sampled sound is in one of three formats depending on several of the parameters
passed. Table 3-1 shows how Set upSndHeader determines what kind of sound header
to create.

Table 3-1 The sampled sound header format used by Set upSndHeader

compressionType numChannels sampleSize Sampled sound header format
" NONE' 1 8 SoundHeader

" NONE' 1 16 Ext SoundHeader

" NONE' 2 any Ext SoundHeader

not' NONE any any CnpSoundHeader

A good way to use this function is to create a handle in which you want to store a
sampled sound, then call Set upSndHeader with the nunByt es parameter set to O to
see how much room the header for that sound will occupy and hence where to append
the audio data. Then record the data into the handle and call Set upSndHeader again
with nunByt es set to the correct amount of sound data recorded. The handle filled out
in this way can be passed to SndPl ay to play the sound.

Sound Input Manager Reference 3-45

Jabeuey 1nduj punos m

CHAPTER 3

Sound Input Manager

SPECIAL CONSIDERATIONS
You cannot call the Set upSndHeader function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Set upSndHeader function are
Trap macro Selector
_SoundDi spat ch $0D480014

RESULT CODES

noErr 0 No error
si | nval i dConpr essi on -223 Invalid compression type

SEE ALSO

For an example that uses the Set upSndHeader function to set up a sound header
before recording, see Listing 3-1 on page 3-7.

SetupAlFFHeader

You can use the Set upAl FFHeader function to set up a file that can subsequently be
played by SndSt art Fi | ePl ay.

FUNCTI ON Set upAl FFHeader (fRefNum | nteger;
nuntChannel s: | nteger;
sanpl eRat e: Fi xed,;
sanpl eSi ze: |nteger;
conpressi onType: OSType;
nunByt es: Longlnt;
nunfranes: Longlint): OSErr;

f Ref Num A file reference number of a file that is open for writing.

nurChannel s
The number of channels for the sound; one channel is equivalent to
monaural sound and two channels are equivalent to stereo sound.

sanpl eRat e
The rate at which the sound was recorded. The sample rate is declared as
a Fi xed data type. In order to accommodate sample rates greater than 32
kHz, the most significant bit is not treated as a sign bit; instead, that bit is
interpreted as having the value 32,768.

sanpl eSi ze
The sample size for the original sound (that is, bits per sample).

3-46 Sound Input Manager Reference

DESCRIPTION

CHAPTER 3

Sound Input Manager

conpressi onType
The compression type for the sound (' NONE' , ' MAC3' ,"' MACE', or other

third-party types).
nunBytes The number of bytes of audio data that are to be stored in the Common
Chunk of the AIFF or AIFF-C file.

nunfranes The number of sample frames for the sample sound. If you are using a
compression type defined by Apple, you can pass 0 in this field and the
appropriate value for this field will be computed automatically.

The Set upAl FFHeader function creates an AIFF or AIFF-C file header, depending on
the parameters passed to it:

= Uncompressed sounds of any type are stored in AIFF format (that is, the
conpr essi onType parameter is ' NONE').

= Compressed sounds of any type are stored in AIFF-C format (that is, the
conpr essi onType parameter is different from ' NONE').

Note

The Set upAl FFHeader function might format a sound file as an AIFF
file even if the File Manager file type of a file is' Al FC . The Sound
Manager will still play such files correctly. O

The AIFF header information is written starting at the current file position of the file
specified by the f Ref Numparameter, and the file position is left at the end of the header
upon completion. The Set upAl FFHeader function creates a Form Chunk, a Format
Version Chunk, a Common Chunk, and a Sound Data chunk, but it does not put any
sound data at the end of the Sound Data Chunk.

A good way to use this routine is to create a file that you want to store a sound in, then
call Set upAl FFHeader with nunByt es set to 0 to position the file to be ready to write
the audio data. Then record the data to the file, set the file position to the beginning of
the file, and call Set upAl FFHeader again with nunByt es set to the correct amount of
sound data recorded. The file created in this way can be passed to the

SndSt ar t Fi | ePl ay function to play the sound.

SPECIAL CONSIDERATIONS

If recording produces an odd number of bytes of sound data, you must add a pad byte to
make the total number of bytes even.

Because the Set upAl FFHeader function moves memory, you should not call it at
interrupt time.

Sound Input Manager Reference 3-47

Jabeuey 1nduj punos m

CHAPTER 3

Sound Input Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Set upAl FFHeader function are

Trap macro Selector
_SoundDi spat ch $0B4C0014

RESULT CODES

noErr 0 No error
si I nval i dConpr essi on 223 Invalid compression type

Registering Sound Input Devices

Sound input device drivers must call the SPBSi gnl nDevi ce function to register with
the Sound Input Manager before they can use its sound input services. You might call
this routine at system startup time from within an extension to install a sound input
device driver. Your application can generate a list of registered sound input devices by
using the SPBGet | ndexedDevi ce function. You can cancel the registration of your
driver, thus removing it from the Sound control panel and making it inaccessible, by
calling the SPBSi gnCQut Devi ce function.

SPBSigninDevice

You can register a sound input device by calling the SPBSi gnl nDevi ce function.

FUNCTI ON SPBSi gnl nDevi ce (devi ceRef Num | nt eger;
devi ceNane: Str255): OSErr;

devi ceRef Num
The device driver reference number of the sound input device to register
with the Sound Input Manager.

devi ceNanme
The device’s name as it is to appear to the user in the Sound In control
panel (which is not the name of the driver used by the Device Manager).

DESCRIPTION

The SPBSi gnl nDevi ce function registers with the Sound Input Manager the device
whose driver reference number is devi ceRef Num

The devi ceName parameter specifies this device’s name as it is to appear to the user in
the Sound In control panel (which is not the name of the driver itself). Accordingly, the
name should be as descriptive as possible. You should call SPBSi gnl nDevi ce after you
have already opened your driver by calling normal Device Manager routines.

3-48 Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

SPECIAL CONSIDERATIONS
Because the SPBSi gnl nDevi ce function moves or purges memory, you should not call
it at interrupt time. You can, however, call it at system startup time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBSi gnl nDevi ce function are

Trap macro Selector
_SoundDi spat ch $030C0014

RESULT CODES

noErr 0 No error
si BadSoundI nDevi ce —221 Invalid sound input device

SPBGetIndexedDevice

You can use the SPBGet | ndexedDevi ce function to help generate a list of sound input
devices.

FUNCTI ON SPBCet | ndexedDevi ce (count: |nteger;
VAR devi ceNane: Str255;
VAR devi cel conHandl e: Handl e) :
OSErr;

count The index number of the sound input device you wish to obtain
information about.

devi ceNane
On exit, the name of the sound input device specified by the count
parameter.

devi cel conHandl e
On exit, a handle to the icon of the sound input device specified by the
count parameter. The memory for this icon is allocated automatically,
but your application must dispose of it.

DESCRIPTION
The SPBGet | ndexedDevi ce function returns the name and icon of the device whose
index is specified in the count parameter. Your application can create a list of sound
input devices by calling this function with a count starting at 1 and incrementing it by
1 until the function returns si BadSoundI nDevi ce.

Because the Sound In control panel allows the user to select a sound input device, most
applications should not use this function. Your application might need to use this
function if it allows the user to record from more than one sound input device at once.

Sound Input Manager Reference 3-49

Jabeuey 1nduj punos m

CHAPTER 3

Sound Input Manager

SPECIAL CONSIDERATIONS

Because the SPBGet | ndexedDevi ce function allocates memory, you should not call it
at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBCGet | ndexedDevi ce function are

Trap macro Selector
_SoundDi spat ch $05140014

RESULT CODES

noErr 0 No error
si BadSoundI nDevi ce —221 Invalid sound input device

SPBSignOutDevice

You can use the SPBSi gnQut Devi ce function to cancel the registration of a device you
have previously registered with the SPBSi gnl nDevi ce function.

FUNCTI ON SPBSi gnQut Devi ce (devi ceRef Num Integer): OSErr;

devi ceRef Num
The driver reference number of the device you wish to sign out.

DESCRIPTION

The SPBSi gnQut Devi ce function cancels the registration of the device whose driver
reference number is devi ceRef Num the device is unregistered from the Sound Input
Manager’s list of available sound input devices and no longer appears in the Sound In
control panel.

Ordinarily, you should not need to use the SPBSi gnQut Devi ce function. You might use
it if your device driver detects that a sound input device is not functioning correctly or
has been disconnected.

SPECIAL CONSIDERATIONS

Because the SPBSi gnQut Devi ce function moves or purges memory, you should not
call it at interrupt time.

3-50 Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SPBSi gnQut Devi ce function are

Trap macro Selector
_SoundDi spat ch $01100014

RESULT CODES
noErr 0
si BadSoundl nDevi ce -221
si Devi ceBusyErr -227

No error
Invalid sound input device
Sound input device is busy

Converting Between Milliseconds and Bytes

The Sound Input Manager provides two routines that allow you to convert between
millisecond and byte recording values.

SPBMilliSecondsToBytes

You can use the SPBM | | i SecondsToByt es function to determine how many bytes a
recording of a certain duration will use.

FUNCTI ON SPBM I | i SecondsToBytes (i nRef Num Longlnt;

VAR m | liseconds: Longlnt): OSErr;

i nRef Num The device reference number of the sound input device, as obtained from
the SPBOpenDevi ce function.

mlliseconds

On entry, the duration of the recording in milliseconds. On exit, the
number of bytes that sampled-sound data would occupy for a recording
of the specified duration on the device specified by the i nRef Num

parameter.
DESCRIPTION
The SPBM | | i SecondsToByt es function reports how many bytes are required to store
a recording of duration mi | | i seconds, given the input device’s current sample rate,

sample size, number of channels, and compression factor.

SPECIAL CONSIDERATIONS

You can call the SPBM | | i SecondsToByt es function at interrupt time.

Sound Input Manager Reference

3-51

Jabeuey 1nduj punos m

CHAPTER 3

Sound Input Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBM | | i SecondsToByt es function are

Trap macro Selector
_SoundDi spat ch $04400014

RESULT CODES

noErr 0 No error
si BadSoundI nDevi ce 221 Invalid sound input device

SPBBytesToMilliSeconds

You can use the SPBByt esToM | | i Seconds function to determine the maximum
duration of a recording that can fit in a buffer of a certain size.

FUNCTI ON SPBByt esToM I |i Seconds (i nRef Num Longl nt;
VAR byt eCount: Longlnt): OSErr;

i nRef Num The device reference number of the sound input device, as obtained from
the SPBOpenDevi ce function.

byt eCount On entry, a value in bytes. On exit, the number of milliseconds of
recording on the device specified by the i nRef Numparameter that would
be necessary to fill a buffer of such a size.

DESCRIPTION

The SPBByt esToM | | i Seconds function reports how many milliseconds of audio
data can be recorded in a buffer that is byt eCount bytes long, given the input device’s
current sample rate, sample size, number of channels, and compression factor.

SPECIAL CONSIDERATIONS
You can call the SPBByt esToM | | i Seconds function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBByt esToM | | i Seconds function are
Trap macro Selector
_SoundDi spat ch $04440014

RESULT CODES

noErr 0 No error
si BadSoundl| nDevi ce -221 Invalid sound input device

3-52 Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

Obtaining Information

The SPBVer si on function allows you to determine the version of the Sound
Input Manager.

SPBVersion

You can use the SPBVer si on function to determine the version of the sound input tools
available on a machine.

FUNCTI ON SPBVer si on: NumVer si on;

DESCRIPTION
The SPBVer si on function returns a version number that contains the same information
as in the first 4 bytesof a' ver s' resource or a NunVer si on data type. For a description
of the version record, see the chapter “Sound Manager” in this book.

SPECIAL CONSIDERATIONS
You can call the SPBVer si on function at interrupt time.

Jabeuey 1nduj punos m

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SPBVer si on function are

Trap macro Selector
_SoundDi spat ch $00000014

SEE ALSO
For a complete discussion of ' ver s’ resources, see the chapter “Finder Interface” in
Inside Macintosh: Macintosh Toolbox Essentials.

Application-Defined Routines

This section describes the routines that your application or device driver might need to
define. Your application can define a sound input completion routine to perform an
action when recording finishes, and your application can define a sound input interrupt
routine to manipulate sound data during recording.

Sound Input Manager Reference 3-53

CHAPTER 3

Sound Input Manager

Sound Input Completion Routines

You can specify a sound input completion routine in the conpl et i onRout i ne field of a
sound input parameter block that your application uses to initiate asynchronous
recording directly from a device.

MySICompletionRoutine

DESCRIPTION

A sound input completion routine has the following syntax:

PROCEDURE MySI Conpl eti onRoutine (inParanPtr: SPBPtr);

i nParanPtr
A pointer to the sound input parameter block that was used to initiate an
asynchronous recording.

The Sound Input Manager executes your sound input completion routine after recording
terminates either because your application has called the SPBSt opRecor di ng function
or because the prescribed limit is reached. The completion routine is called only for
asynchronous recording.

A common use of a sound input completion routine is to set a global variable that alerts
the application that it should dispose of a sound input parameter block that it had
allocated for an asynchronous sound recording.

SPECIAL CONSIDERATIONS

3-54

Because a sound input completion routine is executed at interrupt time, it should not
allocate, move, or purge memory (either directly or indirectly) and should not depend
on the validity of handles to unlocked blocks.

If your sound input completion routine accesses your application’s global variables, it
must ensure that the A5 register contains the address of the boundary between the
application global variables and the application parameters. Your application can pass
the value of the A5 register to the sound input completion routine in the user Long field
of the sound input parameter block. For more information on ensuring the validity of the
A5 register, see the chapter “Memory Management Utilities” in Inside Macintosh: Memory.

Your sound input completion routine can determine whether an error occurred during
recording by examining the er r or field of the sound input parameter block specified by
i nPar anPt r. Your sound input completion routine can change the value of that field to
alert the application that some other error has occurred.

Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

Because a sound input completion routine is called at interrupt time, it must preserve all
registers other than A0-A1 and D0-D2.

noErr 0 No error

abortErr =27 Asynchronous recording was cancelled
si NoSound| nHar dwar e -220 No sound input hardware available

si BadSoundl nDevi ce -221 Invalid sound input device

si NoBuf f er Speci fi ed 222 No buffer specified

si Devi ceBusyErr —227 Sound input device is busy

Sound Input Interrupt Routines

You can specify a sound input interrupt routine in the i nt er r upt Rout i ne field of
the sound input parameter block that your application uses to initiate asynchronous
recording directly from a device. Because the SPBRecor dToFi | e function uses sound
input interrupt routines to enable it to record sound data to disk during recording, you
can use sound input interrupt routines only with the SPBRecor d function.

MysSlInterruptRoutine

DESCRIPTION

A sound input interrupt routine has the following syntax:

PROCEDURE MySI | nt er r upt Rout i ne;

A sound input device driver executes the sound input interrupt routine associated with
an asynchronous sound recording whenever the driver’s internal buffers are full. The
internal buffers contain raw samples taken directly from the input device. The interrupt
routine can thus modify the samples in the buffer in any way it requires. After your
sound input interrupt routine finishes processing the data, the sound input device
driver compresses the data (if compression is enabled) and copies the data into your
application’s buffer.

SPECIAL CONSIDERATIONS

If your sound input interrupt routine accesses your application’s global variables, it
must ensure that the A5 register contains the address of the boundary between the
application global variables and the application parameters. Your application can pass

the value of the A5 register to the sound input interrupt routine in the user Long field of

the sound input parameter block. For more information on ensuring the validity of the

A5 register, see the chapter “Memory Management Utilities” in Inside Macintosh: Memory.

Sound Input Manager Reference 3-55

Jabeuey 1nduj punos m

CHAPTER 3

Sound Input Manager

ASSEMBLY-LANGUAGE INFORMATION

3-56

Sound input interrupt routines are sometimes written in assembly language to maximize
real-time performance in recording sound. On entry, registers are set up as follows:

Registers on entry

A0 Address of the sound parameter block passed to SPBRecor d
Al Address of the start of the sample buffer

DO Peak amplitude for sample buffer if metering is on

D1 Size of the sample buffer in bytes

If you write a sound input interrupt routine in a high-level language like Pascal or C,
you might need to write inline code to copy variables from the registers into local
variables that your application defines.

Because a sound input interrupt routine is called at interrupt time, it must preserve
all registers.

Sound Input Manager Reference

CHAPTER 3

Sound Input Manager

Summary of the Sound Input Manager

Pascal Summary

Constants

CONST
gestal t SoundAt tr

= 'snd ';{sound attributes selector}

{Gestalt response bit flags related to sound input}

gest al t Soundl OVgr Pr esent
gestal t Bui I t I nSoundl nput
gest al t HasSoundl nput Devi ce
gest al t Pl ayAndRecor d
gestal t 16Bi t Soundl O

gest al t St er eol nput
gestal tLi neLevel | nput

3;

I
©ooNo O R

{sound i nput routines avail abl e}
{built-in input hw avail abl e}

{sound i nput device avail abl e}
{built-in hw can play while recordi ng}
{built-in hw can handl e 16-bit data}
{built-in hw can record stereo sounds}
{built-in input hw needs |line |evel}

{avail abl e information selectors for sound input device drivers}
si Acti veChannel s = 'chac';

si ActivelLevel s
si AGCONO f =
si Async '
si Channel Avai | abl e

si Conpr essi onAvai | abl e
si Conpr essi onFact or

si Conpr essi onHeader

si Conpr essi onNanes

si Conpr essi onType =
si Cont i nuous =
si Devi ceBufferlnfo =
si Devi ceConnect ed =
si Devi cel con =
si Devi ceNane =
si | nput Gai n =
si | nput Sour ce =
si | nput Sour ceNanes
si Level Met er ONOF f '
si Nunber Channel s '

Summary of the Sound Input Manager

| mac' ;

agc

asyn';
chav';

cnav
cnfa'
cmhd'
cnam
conp'
cont'
dbi n'
dcon’
i con'
nanme'
gai n'
sour'
snam
| met'’

chan';

{channel s active}

{level s active}

{automatic gain control state}
{asynchronous capability}
{nunmber of channel s avail abl e}
{conpression types avail abl e}
{current conpression factor}
{return conpression header}
{return conpression type nanes}
{current conpression type}
{continuous recording}

{size of interrupt buffer}
{input device connection status}
{input device icon}

{i nput device nane}

{input gain |evel}

{input source selector}

{i nput source nanes}

{level meter state}

{current nunmber of channel s}

3-57

Jabeuey 1nduj punos m

CHAPTER 3

Sound Input Manager

si OptionsDi al og

si PlayThruOnOr f

si Recordi ngQual ity

si Sanpl eRat e

si Sanpl eRat eAvai | abl e
si Sanpl eSi ze

si Sanpl eSi zeAvai | abl e
si St ereol nput Gai n

si TwosConpl enment OnOf f
si VoxRecor dl nfo

si VoxSt opl nfo

{internal information
si Cl oseDri ver
silnitializeDriver

si PauseRecor di ng

si UserlInterruptProc

{sound-recordi ng qual
siBestQuality
siBetterQuality

si GoodQual ity

{sound i nput devi ce perm ssions}

opt d'
='"plth
= 'qual"’
= 'srat’
srav'
= 'ssiz'
ssav'
= 'sgai'
= 'twos'
= 'voxr'
= 'voxs'

sel ectors

= 'cl os'
"init'
' paus'
"user'

ities}
= ' best"’
= 'betr’
' good'

; {di splay options dial og box}
; {pl ay-t hrough st ate}

; {recording quality}

; {current sanple rate}

; {sanpl e rates avail abl e}
; {current sanple size}

; {sanpl e sizes avail abl e}
; {stereo input gain |level}
; {two's conpl ement st ate}
; {VOX record paraneters}

; {VOX stop paraneters}

for sound input device drivers}

; {rel ease driver}

; {initialize driver}

; {pause recordi ng}

; {set sound input interrupt routine}

; {the best quality avail abl e}
; {a quality better than good}
; {a good quality}

si ReadPer nmi ssi on = 0; {open device for reading}
si Wi tePern ssion = 1, {open device for reading/witing}
{devi ce- connecti on st at es}
si Devi cel sConnect ed =1, {device is connected and ready}
si Devi ceNot Connect ed = 0; {device is not connected}
si Dont Know f Connect ed = -1; {can't tell if device is connected}

Data Types

Sound Input Parameter Block

TYPE SPB =

RECORD
i nRef Num Longl nt; {reference number of input device}
count : Longl nt ; {nunber of bytes to record}
mlliseconds: Longl nt; {nunber of mlliseconds to record}
buf f er Lengt h: Longl nt; {length of buffer to record into}
bufferPtr: Ptr; {pointer to buffer to record into}
conpl eti onRout i ne: ProcPtr; {pointer to a conpletion routine}

3-58 Summary of the Sound Input Manager

CHAPTER 3

Sound Input Manager

i nterrupt Routi ne: ProcPtr; {pointer to an interrupt routine}
user Long: Longl nt ; {for application's use}
error: CSErr; {error returned after recording}
unusedl: Longl nt; {reserved}

END;

SPBPtr = ASPB;

Sound Input Manager Routines

Recording Sounds

FUNCTI ON SndRecord (filterProc: ProcPtr; corner: Point;
quality: OSType; VAR sndHandl e: Handle): OSErr;

FUNCTI ON SndRecor dToFi |l e (filterProc: ProcPtr; corner: Point;
quality: OSType; fRef Num Integer): OSErr;

Opening and Closing Sound Input Devices

FUNCTI ON SPBOpenDevi ce (devi ceNanme: Str255; perm ssion: |Integer;
VAR i nRef Num Longlnt): OCSErr;
FUNCTI ON SPBCI oseDevi ce (inRef Num Longlnt): CSErr;

Recording Sounds Directly From Sound Input Devices

FUNCTI ON SPBRecord (inParanPtr: SPBPtr; asynchFl ag: Bool ean):
OSErr;

FUNCTI ON SPBRecor dToFi | e (fRef Num Integer; inParanPtr: SPBPtr;
asynchFl ag: Bool ean): OSErr;

FUNCTI ON SPBPauseRecording (i nRef Num Longlnt): OSErr;

FUNCTI ON SPBResuneRecor di ng
(i nRef Num Longlnt): OSErr;

FUNCTI ON SPBSt opRecor di ng (i nRef Num Longlint): OSErr;

FUNCTI ON SPBGet Recor di ngSt at us
(i nRef Num Longl nt;
VAR recordi ngSt atus: Integer;
VAR net er Level : | nteger;
VAR t ot al Sanpl esToRecord: Longlnt;
VAR nunber Of Sanpl esRecorded: Longl nt;
VAR t ot al MsecsToRecord: Longlnt;
VAR nunber O MsecsRecorded: Longint): OSErr;

Manipulating Device Settings

FUNCTI ON SPBCet Devi cel nfo (inRef Num Longlnt; infoType: OSType;
i nfoData: Ptr): OSErr;

Summary of the Sound Input Manager 3-59

Jabeuey 1nduj punos m

CHAPTER 3

Sound Input Manager

FUNCTI ON SPBSet Devi cel nfo (inRef Num Longlnt; infoType: OSType;
infoData: Ptr): OSErr;

Constructing Sound Resource and File Headers

FUNCTI ON Set upSndHeader (sndHandl e: Handl e; nuntChannel s: |nteger;
sanpl eRat e: Fi xed; sanpl eSi ze: |nteger;
conpressi onType: OSType;
baseFrequency: Integer; nunBytes: Longlnt;
VAR header Len: |nteger): OSErr;

FUNCTI ON Set upAl FFHeader (f Ref Num | nteger; numChannels: Integer;
sanpl eRate: Fi xed; sanpl eSi ze: |nteger;
conpressi onType: OSType; nunBytes: Longlnt;
nunfranes: Longlnt): OSErr;

Registering Sound Input Devices
FUNCTI ON SPBSi gnl nDevi ce (devi ceRef Num I nteger; deviceNane: Str255):
OSErr;

FUNCTI ON SPBGet | ndexedDevi ce
(count: Integer; VAR deviceNane: Str255;
VAR devi cel conHandl e: Handl e): OSErr;

FUNCTI ON SPBSi gnQut Devi ce (devi ceRef Num Integer): OSErr;

Converting Between Milliseconds and Bytes

FUNCTI ON SPBM | | i SecondsToByt es
(inRefNum Longint; VAR nilliseconds: Longlnt):
OSErr;

FUNCTI ON SPBByt esToM | | i Seconds
(inRef Num Longlnt; VAR byteCount: Longlnt):
OSErr;

Obtaining Information
FUNCTI ON SPBVer si on : NumVer si on;

Application-Defined Routines

PROCEDURE My SI Conpl et i onRouti ne
(inParanPtr: SPBPtr);

PROCEDURE MySI | nt er r upt Rout i ne;

3-60 Summary of the Sound Input Manager

CHAPTER 3

Sound Input Manager

C Summary

Constants

#def i ne gestalt SoundAttr 'snd

enum {
/*Cestalt response bit flags related to sound i nput*/

gest al t Soundl Ovgr Pr esent
gestal t Bui | t I nSoundl nput
gest al t HasSoundl nput Devi ce
gest al t Pl ayAndRecor d
gestal t 16Bi t Soundl O

gest al t St er eol nput =
gestal tLi neLevel | nput

b

1
© 00N U~ W

/*sound attributes sel ector*/

/*sound input routines avail abl e*/
/*built-in input hw avail abl e*/
/*sound input device avail abl e*/

[*built-in hw can play while recordi ng*/

[*built-in hw can handl e 16-bit data*/

/*built-in hw can record stereo sounds*/

/*built-in input hw needs |ine |evel*/

/*avail able information selectors for sound input device drivers*/

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

si Acti veChannel s ' chac'
si ActivelLevel s "l mac'
si AGCONOY f "agc '
si Async "asyn’

chav'

si Channel Avai | abl e
si Conpr essi onAvai | abl e' crmav
si Conpr essi onFact or ‘cnfa'
si Conpr essi onHeader ' cmhd'

si Conpr essi onNanes ' cnamn
si Conpr essi onType ' conp'
si Cont i nuous ' cont

si Devi ceBufferlnfo "dbin’

si Devi ceConnect ed "dcon'
si Devi cel con "icon'
si Devi ceNane ' naneg'
si I nput Gai n ‘'gain’
si | nput Sour ce "sour'
si | nput Sour ceNarnes ' snamn

si Level Met er OnOF f "1 et

si Nunmber Channel s ' chan'
si Opti onsDi al og "optd
si Pl ayThruOnOr f "plth
si Recordi ngQual ity "qual’
si Sanpl eRat e "srat’

si Sanpl eRat eAvai | abl e ' srav

/ *channel s active*/
/*l evel s active*/

/*automatic gain control state*/

/ *asynchronous capability*/

[/ *nunmber of channel s avail abl e*/

/*conpression types avail abl e*/
/*current conpression factor*/
/*return conpressi on header*/

/*return conpression type nanes*/

/*current conpression type*/
/*conti nuous recordi ng*/
/*size of interrupt buffer*/

/*input device connection status*/

/*input device icon*/

/*input devi ce nane*/

/*input gain level*/

/*input source selector*/

/*i nput source nanes*/

/*l evel neter state*/
/*current nunber of channel s*/
/*di splay options dial og box*/
/*pl ay-through state*/
/*recording quality*/
/*current sanple rate*/
/*sanpl e rates avail abl e*/

Summary of the Sound Input Manager

3-61

Jabeuey 1nduj punos m

CHAPTER 3

Sound Input Manager

#def i ne si Sanpl eSi ze ssi z
#defi ne si Sanpl eSi zeAvai |l abl e ' ssav
#defi ne si Stereol nputGai n 'sgai’

#def i ne si TwosConpl emrent ONOFf ' t wos'
#def i ne si VoxRecordl nfo "voxr'
#defi ne si VoxSt opl nfo VOXS

/*internal

#define si C oseDriver "¢l os'
#define silnitializeDriver init'
#def i ne si PauseRecor di ng ' paus'
#def i ne si UserlnterruptProc "user'
/*sound-recording qualities*/
#define siBestQuality ' best
#define siBetterQuality "betr'
#define si GoodQual ity ' good

/*sound input device perm ssions*/

/*current sanple size*/
/*sanpl e sizes avail abl e*/
/*stereo input gain level*/
/*two's conpl enent state*/
/*VOX record paraneters*/
/*VOX stop paraneters*/

i nfornmation selectors for sound i nput device drivers*/

/*rel ease driver*/
/*initialize driver*/
/ *pause recordi ng*/

/*set sound input interrupt routine*/

/*the best quality avail abl e*/
/*a quality better than good*/
/*a good quality*/

enum {
si ReadPer m ssi on = 0, / *open device for readi ng*/
si WitePerm ssion =1 /*open device for readi ng/witing*/
b
/ *devi ce- connecti on states*/
enum {
si Devi cel sConnect ed = 1, /*device is connected and ready*/
si Devi ceNot Connect ed = 0, /*device is not connected*/
si Dont Know f Connect ed =-1 /*can't tell if device is connected*/
1
Data Types
Sound Input Parameter Block
struct SPB {
| ong i nRef Num /*reference nunber of input device*/

unsi gned | ong
unsi gned | ong
unsi gned | ong

count ;
mlliseconds;
buf f er Lengt h;

/*nunber of bytes to record*/

/*nunber of milliseconds to record*/
/*length of buffer to record into*/
/*pointer to buffer to record into*/

/*pointer to a conpletion routine*/

Ptr bufferPtr;

ProcPtr conpl eti onRout i ne;

ProcPtr i nterrupt Routi ne;
3-62 Summary of the Sound Input Manager

CHAPTER 3

Sound Input Manager

/*pointer to an interrupt routine*/

| ong user Long; /*for application's use*/
OSErr error; /*error returned after recording*/
| ong unusedl; /*reserved*/

b
t ypedef struct SPB SPB;
t ypedef SPB *SPBPtr;

Sound Input Manager Routines

Recording Sounds

pascal OSErr SndRecord (Modal FilterProcPtr filterProc, Point corner,
OSType quality, Handle *sndHandl e);

pascal OSErr SndRecordToFil e
(Modal FilterProcPtr filterProc, Point corner,
OSType quality, short fRefNunj;

Opening and Closing Sound Input Devices

pascal OSErr SPBQpenDevice (ConstStr255Param devi ceNane, short perm ssion,
| ong *i nRef Nunj ;
pascal OSErr SPBC oseDevi ce
(1ong i nRef Num ;

Recording Sounds Directly From Sound Input Devices

pascal OSErr SPBRecord (SPBPtr inParanPtr, Bool ean asynchFl ag);

pascal OSErr SPBRecordToFil e
(short fRefNum SPBPtr inParanPtr,
Bool ean asynchFl ag) ;

pascal OSErr SPBPauseRecor di ng
(1 ong i nRef Num ;

pascal OSErr SPBResuneRecor di ng
(1ong i nRef Num ;

pascal OSErr SPBSt opRecordi ng
(long i nRef Nunm ;

pascal OSErr SPBGet Recordi ngSt at us
(long i nRef Num short *recordi ngSt at us,
short *neterLevel,
unsi gned | ong *total Sanpl esToRecord,
unsi gned | ong *nunber O Sanpl esRecor ded,
unsi gned | ong *total MsecsToRecord,
unsi gned | ong *nunmber O MsecsRecor ded) ;

Summary of the Sound Input Manager 3-63

Jabeuey 1nduj punos m

CHAPTER 3

Sound Input Manager

Manipulating Device Settings

pascal OSErr SPBGet Devi cel nfo
(long i nRef Num OSType i nfoType,
char *infoData);
pascal OSErr SPBSet Devi cel nfo
(long i nRef Num OSType i nfoType,
char *infoData);

Constructing Sound Resource and File Headers

pascal OSErr SetupSndHeader

(Handl e sndHandl e, short nunChannel s,

Fi xed sanpl eRate, short sanpl eSi ze,

OSType conpressi onType, short baseFrequency,

unsi gned | ong nunBytes, short *headerlLen);
pascal OSErr SetupAl FFHeader

(short fRef Num short nuntChannels,

Fi xed sanpl eRate, short sanpl eSi ze,

OSType conpressi onType,

unsi gned | ong nunByt es,

unsi gned | ong nunfranes);

Registering Sound Input Devices

pascal OSErr SPBSi gnl nDevi ce
(short devi ceRef Num
Const St r 255Par am devi ceNane) ;

pascal OSErr SPBGet | ndexedDevi ce
(short count, Str255 devi ceNane,
Handl e *devi cel conHandl e);

pascal OSErr SPBSi gnQut Devi ce
(short devi ceRef Nun;

Converting Between Milliseconds and Bytes

pascal OSErr SPBM | |i SecondsToByt es
(long inRefNum long *milliseconds);

pascal OSErr SPBBytesToM || i Seconds
(long i nRef Num | ong *byteCount);

Obtaining Information

pascal NumVersi on SPBVersi on
(voi d);

3-64 Summary of the Sound Input Manager

CHAPTER 3

Sound Input Manager

Application-Defined Routines

pascal

pascal

Assembly-Language Summary

voi d MySI Conpl eti onRout i ne

(SPBPtr inParanPtr);

void MySIInterruptRoutine

(voi d);

Data Structures

Sound Input Parameter Block Data Structure

0

4

8
12
16
20
24
28
32
36

i nNRef Num long
count long
m | liseconds long
buf f er Lengt h long
bufferPtr long
conpl eti onRout i ne long
i nterruptRoutine long
user Long long
error word
unusedl long

The input device reference number

The number of bytes to record

The number of milliseconds to record
The length of the buffer

The address of the buffer

A pointer to a completion routine

A pointer to an interrupt routine

For application’s use

The error value returned after recording
Reserved

Summary of the Sound Input Manager

3-65

Jabeuey 1nduj punos m

CHAPTER 3

Sound Input Manager

Trap Macros

Trap Macros Requiring Routine Selectors

_SoundDi spat ch

Selector Routine

$00000014 SPBVer si on

$01100014 SPBSi gnCQut Devi ce
$021C0014 SPBC oseDevi ce
$02280014 SPBPauseRecor di ng
$022C0014 SPBResuneRecor di ng
$02300014 SPBSt opRecor di ng
$030C0014 SPBSi gnl nDevi ce
$03200014 SPBRecor d

$04240014 SPBRecor dToFi | e
$04400014 SPBM | | i secondsToByt es
$04440014 SPBByt esToM | | i seconds
$05140014 SPBCet | ndexedDevi ce
$05180014 SPBOpenDevi ce
$06380014 SPBGet Devi cel nfo
$063C0014 SPBSet Devi cel nfo
$07080014 SndRecor dToFi | e
$08040014 SndRecord

$0B4C0014 Set upAl FFHeader
$0D480014 Set upSndHeader
$0E340014 SPBCet Recor di ngSt at us

Result Codes

NnoErr 0 No error

abortErr 27 Asynchronous recording was cancelled
per nerr -54 Attempt to open locked file for writing
user Cancel edErr -128 User canceled the operation

si NoSoundl nHar dwar e -220 No sound input hardware available

si BadSoundI nDevi ce —221 Invalid sound input device

si NoBuf f er Speci fi ed -222 No buffer specified

si | nval i dConpr essi on -223 Invalid compression type

si Har dDri veTooS| ow —224 Hard drive too slow to record

si | nval i dSanpl eRat e -225 Invalid sample rate

si | nval i dSanpl eSi ze -226 Invalid sample size

si Devi ceBusyErr —-227 Sound input device is busy

si BadDevi ceNane —228 Invalid device name

3-66

Summary of the Sound Input Manager

CHAPTER 3

Sound Input Manager

si BadRef Num -229
si | nput Devi ceErr -230
si Unknownl nf oType -231
si UnknownQual ity -232

Invalid reference number
Input device hardware failure
Unknown type of information
Unknown quality

Summary of the Sound Input Manager

3-67

Jabeuey 1nduj punos m

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Sound TOC
	 Introduction to Sound
	 Sound Manager TOC
	 Sound Manager
	 Sound Input Manager TOC
	Sound Input Manager
	About the Sound Input Manager
	Sound Recording Without the Standard Interface
	Interaction With Sound Input Devices
	Sound Input Device Drivers

	Using the Sound Input Manager
	Recording Sounds Directly From a Device
	Defining a Sound Input Completion Routine
	Defining a Sound Input Interrupt Routine

	Getting and Setting Sound Input Device Information...
	Writing a Sound Input Device Driver
	Responding to Status and Control Requests
	Responding to Read Requests
	Supporting Stereo Recording
	Supporting Continuous Recording

	Sound Input Manager Reference
	Constants
	Gestalt Selector and Response Bits
	Sound Input Device Information Selectors

	Data Structures
	Sound Input Parameter Blocks

	Sound Input Manager Routines
	Recording Sounds
	Opening and Closing Sound Input Devices
	Recording Sounds Directly From Sound Input Devices...
	Manipulating Device Settings
	Constructing Sound Resource and File Headers
	Registering Sound Input Devices
	Converting Between Milliseconds and Bytes
	Obtaining Information

	Application-Defined Routines
	Sound Input Completion Routines
	Sound Input Interrupt Routines

	Summary of the Sound Input Manager
	Pascal Summary
	Constants
	Data Types
	Sound Input Manager Routines
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Sound Input Manager Routines
	Application-Defined Routines

	Assembly-Language Summary
	Data Structures
	Trap Macros

	Result Codes

	 Speech Manager TOC
	 Speech Manager
	 Sound Components TOC
	 Sound Components
	 Audio Components TOC
	 Audio Components
	 Glossary
	 Index
	 Colophon

