SIGACTION(2) BSD System Calls Manual SIGACTION(2)
NAME
sigaction -- software signal facilities
LIBRARY
Standard C Library (libc, -lc)
SYNOPSIS
#include <signal.h>
struct sigaction {
union {
void (*__sa_handler)(int);
void (*__sa_sigaction)(int, struct __siginfo *, void *);
} __sigaction_u; /* signal handler */
int sa_flags; /* see signal options below */
sigset_t sa_mask; /* signal mask to apply */
};
#define sa_handler __sigaction_u.__sa_handler
#define sa_sigaction __sigaction_u.__sa_sigaction
int
sigaction(int sig, const struct sigaction *restrict act, struct sigaction *restrict oact);
DESCRIPTION
The system defines a set of signals that may be delivered to a process. Signal delivery resembles the
occurrence of a hardware interrupt: the signal is normally blocked from further occurrence, the current
process context is saved, and a new one is built. A process may specify a handler to which a signal is
delivered, or specify that a signal is to be ignored. A process may also specify that a default action
is to be taken by the system when a signal occurs. A signal may also be blocked, in which case its
delivery is postponed until it is unblocked. The action to be taken on delivery is determined at the
time of delivery. Normally, signal handlers execute on the current stack of the process. This may be
changed, on a per-handler basis, so that signals are taken on a special signal stack.
Signal routines normally execute with the signal that caused their invocation blocked, but other sig-nals signals
nals may yet occur. A global signal mask defines the set of signals currently blocked from delivery to
a process. The signal mask for a process is initialized from that of its parent (normally empty). It
may be changed with a sigprocmask(2) call, or when a signal is delivered to the process.
When a signal condition arises for a process, the signal is added to a set of signals pending for the
process. If the signal is not currently blocked by the process then it is delivered to the process.
Signals may be delivered any time a process enters the operating system (e.g., during a system call,
page fault or trap, or clock interrupt). If multiple signals are ready to be delivered at the same
time, any signals that could be caused by traps are delivered first. Additional signals may be pro-cessed processed
cessed at the same time, with each appearing to interrupt the handlers for the previous signals before
their first instructions. The set of pending signals is returned by the sigpending(2) system call.
When a caught signal is delivered, the current state of the process is saved, a new signal mask is cal-culated calculated
culated (as described below), and the signal handler is invoked. The call to the handler is arranged
so that if the signal handling routine returns normally the process will resume execution in the con-text context
text from before the signal's delivery. If the process wishes to resume in a different context, then
it must arrange to restore the previous context itself.
When a signal is delivered to a process a new signal mask is installed for the duration of the process'
signal handler (or until a sigprocmask(2) system call is made). This mask is formed by taking the
union of the current signal mask set, the signal to be delivered, and the signal mask associated with
the handler to be invoked.
The sigaction() system call assigns an action for a signal specified by sig. If act is non-zero, it
specifies an action (SIG_DFL, SIG_IGN, or a handler routine) and mask to be used when delivering the
specified signal. If oact is non-zero, the previous handling information for the signal is returned to
the user.
Once a signal handler is installed, it normally remains installed until another sigaction() system call
is made, or an execve(2) is performed. A signal-specific default action may be reset by setting
sa_handler to SIG_DFL. The defaults are process termination, possibly with core dump; no action; stop-ping stopping
ping the process; or continuing the process. See the signal list below for each signal's default
action. If sa_handler is SIG_DFL, the default action for the signal is to discard the signal, and if a
signal is pending, the pending signal is discarded even if the signal is masked. If sa_handler is set
to SIG_IGN current and pending instances of the signal are ignored and discarded.
Options may be specified by setting sa_flags. The meaning of the various bits is as follows:
SA_NOCLDSTOP If this bit is set when installing a catching function for the SIGCHLD signal,
the SIGCHLD signal will be generated only when a child process exits, not when a
child process stops.
SA_NOCLDWAIT If this bit is set when calling sigaction() for the SIGCHLD signal, the system
will not create zombie processes when children of the calling process exit. If
the calling process subsequently issues a wait(2) (or equivalent), it blocks
until all of the calling process's child processes terminate, and then returns a
value of -1 with errno set to ECHILD.
SA_ONSTACK If this bit is set, the system will deliver the signal to the process on a signal
stack, specified with sigaltstack(2).
SA_NODEFER If this bit is set, further occurrences of the delivered signal are not masked
during the execution of the handler.
SA_RESETHAND If this bit is set, the handler is reset back to SIG_DFL at the moment the signal
is delivered.
SA_RESTART See paragraph below.
SA_SIGINFO If this bit is set, the handler function is assumed to be pointed to by the
sa_sigaction member of struct sigaction and should match the prototype shown
above or as below in EXAMPLES. This bit should not be set when assigning SIG_DFL
or SIG_IGN.
If a signal is caught during the system calls listed below, the call may be forced to terminate with
the error EINTR, the call may return with a data transfer shorter than requested, or the call may be
restarted. Restart of pending calls is requested by setting the SA_RESTART bit in sa_flags. The
affected system calls include open(2), read(2), write(2), sendto(2), recvfrom(2), sendmsg(2) and
recvmsg(2) on a communications channel or a slow device (such as a terminal, but not a regular file)
and during a wait(2) or ioctl(2). However, calls that have already committed are not restarted, but
instead return a partial success (for example, a short read count).
After a fork(2) or vfork(2) all signals, the signal mask, the signal stack, and the restart/interrupt
flags are inherited by the child.
The execve(2) system call reinstates the default action for all signals which were caught and resets
all signals to be caught on the user stack. Ignored signals remain ignored; the signal mask remains
the same; signals that restart pending system calls continue to do so.
The following is a list of all signals with names as in the include file <signal.h>:
NAME Default Action Description
SIGHUP terminate process terminal line hangup
SIGINT terminate process interrupt program
SIGQUIT create core image quit program
SIGILL create core image illegal instruction
SIGTRAP create core image trace trap
SIGABRT create core image abort(3) call (formerly SIGIOT)
SIGEMT create core image emulate instruction executed
SIGFPE create core image floating-point exception
SIGKILL terminate process kill program
SIGBUS create core image bus error
SIGSEGV create core image segmentation violation
SIGSYS create core image non-existent system call invoked
SIGPIPE terminate process write on a pipe with no reader
SIGALRM terminate process real-time timer expired
SIGTERM terminate process software termination signal
SIGURG discard signal urgent condition present on socket
SIGSTOP stop process stop (cannot be caught or ignored)
SIGTSTP stop process stop signal generated from keyboard
SIGCONT discard signal continue after stop
SIGCHLD discard signal child status has changed
SIGTTIN stop process background read attempted from control terminal
SIGTTOU stop process background write attempted to control terminal
SIGIO discard signal I/O is possible on a descriptor (see fcntl(2))
SIGXCPU terminate process cpu time limit exceeded (see setrlimit(2))
SIGXFSZ terminate process file size limit exceeded (see setrlimit(2))
SIGVTALRM terminate process virtual time alarm (see setitimer(2))
SIGPROF terminate process profiling timer alarm (see setitimer(2))
SIGWINCH discard signal Window size change
SIGINFO discard signal status request from keyboard
SIGUSR1 terminate process User defined signal 1
SIGUSR2 terminate process User defined signal 2
NOTE
The sa_mask field specified in act is not allowed to block SIGKILL or SIGSTOP. Any attempt to do so
will be silently ignored.
The following functions are either reentrant or not interruptible by signals and are async-signal safe.
Therefore applications may invoke them, without restriction, from signal-catching functions:
Base Interfaces:
_exit(), access(), alarm(), cfgetispeed(), cfgetospeed(), cfsetispeed(), cfsetospeed(), chdir(),
chmod(), chown(), close(), creat(), dup(), dup2(), execle(), execve(), fcntl(), fork(), fpathconf(),
fstat(), fsync(), getegid(), geteuid(), getgid(), getgroups(), getpgrp(), getpid(), getppid(),
getuid(), kill(), link(), lseek(), mkdir(), mkfifo(), open(), pathconf(), pause(), pipe(), raise(),
read(), rename(), rmdir(), setgid(), setpgid(), setsid(), setuid(), sigaction(), sigaddset(),
sigdelset(), sigemptyset(), sigfillset(), sigismember(), signal(), sigpending(), sigprocmask(),
sigsuspend(), sleep(), stat(), sysconf(), tcdrain(), tcflow(), tcflush(), tcgetattr(), tcgetpgrp(),
tcsendbreak(), tcsetattr(), tcsetpgrp(), time(), times(), umask(), uname(), unlink(), utime(), wait(),
waitpid(), write().
Realtime Interfaces:
aio_error(), clock_gettime(), sigpause(), timer_getoverrun(), aio_return(), fdatasync(), sigqueue(),
timer_gettime(), aio_suspend(), sem_post(), sigset(), timer_settime().
ANSI C Interfaces:
strcpy(), strcat(), strncpy(), strncat(), and perhaps some others.
Extension Interfaces:
strlcpy(), strlcat().
All functions not in the above lists are considered to be unsafe with respect to signals. That is to
say, the behaviour of such functions when called from a signal handler is undefined. In general
though, signal handlers should do little more than set a flag; most other actions are not safe.
Also, it is good practice to make a copy of the global variable errno and restore it before returning
from the signal handler. This protects against the side effect of errno being set by functions called
from inside the signal handler.
RETURN VALUES
The sigaction() function returns the value 0 if successful; otherwise the value -1 is returned and the
global variable errno is set to indicate the error.
EXAMPLES
There are three possible prototypes the handler may match:
ANSI C:
void handler(int);
POSIX SA_SIGINFO:
void handler(int, siginfo_t *info, ucontext_t *uap);
The handler function should match the SA_SIGINFO prototype if the SA_SIGINFO bit is set in flags. It
then should be pointed to by the sa_sigaction member of struct sigaction. Note that you should not
assign SIG_DFL or SIG_IGN this way.
If the SA_SIGINFO flag is not set, the handler function should match either the ANSI C or traditional
BSD prototype and be pointed to by the sa_handler member of struct sigaction. In practice, FreeBSD
always sends the three arguments of the latter and since the ANSI C prototype is a subset, both will
work. The sa_handler member declaration in FreeBSD include files is that of ANSI C (as required by
POSIX), so a function pointer of a BSD-style function needs to be casted to compile without warning.
The traditional BSD style is not portable and since its capabilities are a full subset of a SA_SIGINFO
handler, its use is deprecated.
The sig argument is the signal number, one of the SIG... values from <signal.h>.
The code argument of the BSD-style handler and the si_code member of the info argument to a SA_SIGINFO
handler contain a numeric code explaining the cause of the signal, usually one of the SI_... values
from <sys/signal.h> or codes specific to a signal, i.e. one of the FPE_... values for SIGFPE.
The uap argument to a POSIX SA_SIGINFO handler points to an instance of ucontext_t.
ERRORS
The sigaction() system call will fail and no new signal handler will be installed if one of the follow-ing following
ing occurs:
[EFAULT] Either act or oact points to memory that is not a valid part of the process address
space.
[EINVAL] The sig argument is not a valid signal number.
[EINVAL] An attempt is made to ignore or supply a handler for SIGKILL or SIGSTOP.
[EINVAL] An attempt was made to set the action to SIG_DFL for a signal that cannot be caught
or ignored (or both).
STANDARDS
The sigaction() system call is expected to conform to ISO/IEC 9945-1:1990 (``POSIX.1''). The
SA_ONSTACK and SA_RESTART flags are Berkeley extensions, as are the signals, SIGTRAP, SIGEMT, SIGBUS,
SIGSYS, SIGURG, SIGIO, SIGXCPU, SIGXFSZ, SIGVTALRM, SIGPROF, SIGWINCH, and SIGINFO. Those signals are
available on most BSD-derived systems. The SA_NODEFER and SA_RESETHAND flags are intended for back-wards backwards
wards compatibility with other operating systems. The SA_NOCLDSTOP, and SA_NOCLDWAIT flags are featur-ing featuring
ing options commonly found in other operating systems.
SEE ALSO
kill(1), kill(2), ptrace(2), sigaltstack(2), sigblock(2), sigpause(2), sigpending(2), sigprocmask(2),
sigsetmask(2), sigsuspend(2), sigvec(2), wait(2), fpsetmask(3), setjmp(3), siginterrupt(3),
sigsetops(3), ucontext(3), tty(4)
BSD April 3, 1994 BSD
|