ADC Home > Reference Library > Reference > Mac OS X > Mac OS X Man Pages

 

This document is a Mac OS X manual page. Manual pages are a command-line technology for providing documentation. You can view these manual pages locally using the man(1) command. These manual pages come from many different sources, and thus, have a variety of writing styles.

This manual page is associated with the Mac OS X developer tools. The software or headers described may not be present on your Mac OS X installation until you install the developer tools package. This package is available on your Mac OS X installation DVD, and the latest versions can be downloaded from developer.apple.com.

For more information about the manual page format, see the manual page for manpages(5).



BN_add(3)                                          OpenSSL                                         BN_add(3)



NAME
       BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add, BN_mod_sub, BN_mod_mul,
       BN_mod_sqr, BN_exp, BN_mod_exp, BN_gcd - arithmetic operations on BIGNUMs

SYNOPSIS
        #include <openssl/bn.h>

        int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);

        int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);

        int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);

        int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);

        int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
                BN_CTX *ctx);

        int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);

        int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);

        int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
                BN_CTX *ctx);

        int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
                BN_CTX *ctx);

        int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
                BN_CTX *ctx);

        int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);

        int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);

        int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
                const BIGNUM *m, BN_CTX *ctx);

        int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);

DESCRIPTION
       BN_add() adds a and b and places the result in r ("r=a+b").  r may be the same BIGNUM as a or b.

       BN_sub() subtracts b from a and places the result in r ("r=a-b").

       BN_mul() multiplies a and b and places the result in r ("r=a*b").  r may be the same BIGNUM as a or
       b.  For multiplication by powers of 2, use BN_lshift(3).

       BN_sqr() takes the square of a and places the result in r ("r=a^2"). r and a may be the same BIGNUM.
       This function is faster than BN_mul(r,a,a).

       BN_div() divides a by d and places the result in dv and the remainder in rem ("dv=a/d, rem=a%d").
       Either of dv and rem may be NULL, in which case the respective value is not returned.  The result is
       rounded towards zero; thus if a is negative, the remainder will be zero or negative.  For division by
       powers of 2, use BN_rshift(3).

       BN_mod() corresponds to BN_div() with dv set to NULL.

       BN_nnmod() reduces a modulo m and places the non-negative remainder in r.

       BN_mod_add() adds a to b modulo m and places the non-negative result in r.

       BN_mod_sub() subtracts b from a modulo m and places the non-negative result in r.

       BN_mod_mul() multiplies a by b and finds the non-negative remainder respective to modulus m ("r=(a*b)
       mod m"). r may be the same BIGNUM as a or b. For more efficient algorithms for repeated computations
       using the same modulus, see BN_mod_mul_montgomery(3) and BN_mod_mul_reciprocal(3).

       BN_mod_sqr() takes the square of a modulo m and places the result in r.

       BN_exp() raises a to the p-th power and places the result in r ("r=a^p"). This function is faster
       than repeated applications of BN_mul().

       BN_mod_exp() computes a to the p-th power modulo m ("r=a^p % m"). This function uses less time and
       space than BN_exp().

       BN_gcd() computes the greatest common divisor of a and b and places the result in r. r may be the
       same BIGNUM as a or b.

       For all functions, ctx is a previously allocated BN_CTX used for temporary variables; see
       BN_CTX_new(3).

       Unless noted otherwise, the result BIGNUM must be different from the arguments.

RETURN VALUES
       For all functions, 1 is returned for success, 0 on error. The return value should always be checked
       (e.g., "if (!BN_add(r,a,b)) goto err;").  The error codes can be obtained by ERR_get_error(3).

SEE ALSO
       bn(3), ERR_get_error(3), BN_CTX_new(3), BN_add_word(3), BN_set_bit(3)

HISTORY
       BN_add(), BN_sub(), BN_sqr(), BN_div(), BN_mod(), BN_mod_mul(), BN_mod_exp() and BN_gcd() are
       available in all versions of SSLeay and OpenSSL. The ctx argument to BN_mul() was added in SSLeay
       0.9.1b. BN_exp() appeared in SSLeay 0.9.0.  BN_nnmod(), BN_mod_add(), BN_mod_sub(), and BN_mod_sqr()
       were added in OpenSSL 0.9.7.



0.9.7l                                           2002-09-25                                        BN_add(3)

Did this document help you?
Yes: Tell us what works for you.
It’s good, but: Report typos, inaccuracies, and so forth.
It wasn’t helpful: Tell us what would have helped.