ADC Home > Reference Library > Reference > Mac OS X > Mac OS X Man Pages

 

This document is a Mac OS X manual page. Manual pages are a command-line technology for providing documentation. You can view these manual pages locally using the man(1) command. These manual pages come from many different sources, and thus, have a variety of writing styles.

For more information about the manual page format, see the manual page for manpages(5).



B::Concise(3pm)                       Perl Programmers Reference Guide                       B::Concise(3pm)



NAME
       B::Concise - Walk Perl syntax tree, printing concise info about ops

SYNOPSIS
           perl -MO=Concise[,OPTIONS] foo.pl

           use B::Concise qw(set_style add_callback);

DESCRIPTION
       This compiler backend prints the internal OPs of a Perl program's syntax tree in one of several
       space-efficient text formats suitable for debugging the inner workings of perl or other compiler
       backends. It can print OPs in the order they appear in the OP tree, in the order they will execute,
       or in a text approximation to their tree structure, and the format of the information displayed is
       customizable. Its function is similar to that of perl's -Dx debugging flag or the B::Terse module,
       but it is more sophisticated and flexible.

EXAMPLE
       Here's an example of 2 outputs (aka 'renderings'), using the -exec and -basic (i.e. default) format-ting formatting
       ting conventions on the same code snippet.

           % perl -MO=Concise,-exec -e '$a = $b + 42'
           1  <0> enter
           2  <;> nextstate(main 1 -e:1) v
           3  <#> gvsv[*b] s
           4  <$> const[IV 42] s
        *  5  <2> add[t3] sK/2
           6  <#> gvsv[*a] s
           7  <2> sassign vKS/2
           8  <@> leave[1 ref] vKP/REFC

       Each line corresponds to an opcode. The opcode marked with '*' is used in a few examples below.

       The 1st column is the op's sequence number, starting at 1, and is displayed in base 36 by default.
       This rendering is in -exec (i.e.  execution) order.

       The symbol between angle brackets indicates the op's type, for example; <2> is a BINOP, <@> a LISTOP,
       and <#> is a PADOP, which is used in threaded perls. (see "OP class abbreviations").

       The opname, as in 'add[t1]', which may be followed by op-specific information in parentheses or
       brackets (ex '[t1]').

       The op-flags (ex 'sK/2') follow, and are described in ("OP flags abbreviations").

           % perl -MO=Concise -e '$a = $b + 42'
           8  <@> leave[1 ref] vKP/REFC ->(end)
           1     <0> enter ->2
           2     <;> nextstate(main 1 -e:1) v ->3
           7     <2> sassign vKS/2 ->8
        *  5        <2> add[t1] sK/2 ->6
           -           <1> ex-rv2sv sK/1 ->4
           3              <$> gvsv(*b) s ->4
           4           <$> const(IV 42) s ->5
           -        <1> ex-rv2sv sKRM*/1 ->7
           6           <$> gvsv(*a) s ->7

       The default rendering is top-down, so they're not in execution order.  This form reflects the way the
       stack is used to parse and evaluate expressions; the add operates on the two terms below it in the
       tree.

       Nullops appear as "ex-opname", where opname is an op that has been optimized away by perl.  They're
       displayed with a sequence-number of '-', because they are not executed (they don't appear in previous
       example), they're printed here because they reflect the parse.

       The arrow points to the sequence number of the next op; they're not displayed in -exec mode, for
       obvious reasons.

       Note that because this rendering was done on a non-threaded perl, the PADOPs in the previous examples
       are now SVOPs, and some (but not all) of the square brackets have been replaced by round ones.  This
       is a subtle feature to provide some visual distinction between renderings on threaded and un-threaded
       perls.

OPTIONS
       Arguments that don't start with a hyphen are taken to be the names of subroutines to print the OPs
       of; if no such functions are specified, the main body of the program (outside any subroutines, and
       not including use'd or require'd files) is rendered.  Passing "BEGIN", "CHECK", "INIT", or "END" will
       cause all of the corresponding special blocks to be printed.

       Options affect how things are rendered (ie printed).  They're presented here by their visual effect,
       1st being strongest.  They're grouped according to how they interrelate; within each group the
       options are mutually exclusive (unless otherwise stated).

       Options for Opcode Ordering

       These options control the 'vertical display' of opcodes.  The display 'order' is also called 'mode'
       elsewhere in this document.

       -basic
           Print OPs in the order they appear in the OP tree (a preorder traversal, starting at the root).
           The indentation of each OP shows its level in the tree, and the '->' at the end of the line indi-cates indicates
           cates the next opcode in execution order.  This mode is the default, so the flag is included sim-ply simply
           ply for completeness.

       -exec
           Print OPs in the order they would normally execute (for the majority of constructs this is a pos-torder postorder
           torder traversal of the tree, ending at the root). In most cases the OP that usually follows a
           given OP will appear directly below it; alternate paths are shown by indentation. In cases like
           loops when control jumps out of a linear path, a 'goto' line is generated.

       -tree
           Print OPs in a text approximation of a tree, with the root of the tree at the left and
           'left-to-right' order of children transformed into 'top-to-bottom'. Because this mode grows both
           to the right and down, it isn't suitable for large programs (unless you have a very wide termi-nal). terminal).
           nal).

       Options for Line-Style

       These options select the line-style (or just style) used to render each opcode, and dictates what
       info is actually printed into each line.

       -concise
           Use the author's favorite set of formatting conventions. This is the default, of course.

       -terse
           Use formatting conventions that emulate the output of B::Terse. The basic mode is almost indis-tinguishable indistinguishable
           tinguishable from the real B::Terse, and the exec mode looks very similar, but is in a more logi-cal logical
           cal order and lacks curly brackets. B::Terse doesn't have a tree mode, so the tree mode is only
           vaguely reminiscent of B::Terse.

       -linenoise
           Use formatting conventions in which the name of each OP, rather than being written out in full,
           is represented by a one- or two-character abbreviation.  This is mainly a joke.

       -debug
           Use formatting conventions reminiscent of B::Debug; these aren't very concise at all.

       -env
           Use formatting conventions read from the environment variables "B_CONCISE_FORMAT", "B_CON-CISE_GOTO_FORMAT", "B_CONCISE_GOTO_FORMAT",
           CISE_GOTO_FORMAT", and "B_CONCISE_TREE_FORMAT".

       Options for tree-specific formatting


       -compact
           Use a tree format in which the minimum amount of space is used for the lines connecting nodes
           (one character in most cases). This squeezes out a few precious columns of screen real estate.

       -loose
           Use a tree format that uses longer edges to separate OP nodes. This format tends to look better
           than the compact one, especially in ASCII, and is the default.

       -vt Use tree connecting characters drawn from the VT100 line-drawing set.  This looks better if your
           terminal supports it.

       -ascii
           Draw the tree with standard ASCII characters like "+" and "|". These don't look as clean as the
           VT100 characters, but they'll work with almost any terminal (or the horizontal scrolling mode of
           less(1)) and are suitable for text documentation or email. This is the default.

       These are pairwise exclusive, i.e. compact or loose, vt or ascii.

       Options controlling sequence numbering


       -basen
           Print OP sequence numbers in base n. If n is greater than 10, the digit for 11 will be 'a', and
           so on. If n is greater than 36, the digit for 37 will be 'A', and so on until 62. Values greater
           than 62 are not currently supported. The default is 36.

       -bigendian
           Print sequence numbers with the most significant digit first. This is the usual convention for
           Arabic numerals, and the default.

       -littleendian
           Print seqence numbers with the least significant digit first.  This is obviously mutually exclu-sive exclusive
           sive with bigendian.

       Other options

       These are pairwise exclusive.

       -main
           Include the main program in the output, even if subroutines were also specified.  This rendering
           is normally suppressed when a subroutine name or reference is given.

       -nomain
           This restores the default behavior after you've changed it with '-main' (it's not normally
           needed).  If no subroutine name/ref is given, main is rendered, regardless of this flag.

       -nobanner
           Renderings usually include a banner line identifying the function name or stringified subref.
           This suppresses the printing of the banner.

           TBC: Remove the stringified coderef; while it provides a 'cookie' for each function rendered, the
           cookies used should be 1,2,3.. not a random hex-address.  It also complicates string comparison
           of two different trees.

       -banner
           restores default banner behavior.

       -banneris => subref
           TBC: a hookpoint (and an option to set it) for a user-supplied function to produce a banner
           appropriate for users needs.  It's not ideal, because the rendering-state variables, which are a
           natural candidate for use in concise.t, are unavailable to the user.

       Option Stickiness

       If you invoke Concise more than once in a program, you should know that the options are 'sticky'.
       This means that the options you provide in the first call will be remembered for the 2nd call, unless
       you re-specify or change them.

ABBREVIATIONS
       The concise style uses symbols to convey maximum info with minimal clutter (like hex addresses).
       With just a little practice, you can start to see the flowers, not just the branches, in the trees.

       OP class abbreviations

       These symbols appear before the op-name, and indicate the B:: namespace that represents the ops in
       your Perl code.

           0      OP (aka BASEOP)  An OP with no children
           1      UNOP             An OP with one child
           2      BINOP            An OP with two children
           |      LOGOP            A control branch OP
           @      LISTOP           An OP that could have lots of children
           /      PMOP             An OP with a regular expression
           $      SVOP             An OP with an SV
           "      PVOP             An OP with a string
           {      LOOP             An OP that holds pointers for a loop
           ;      COP              An OP that marks the start of a statement
           #      PADOP            An OP with a GV on the pad

       OP flags abbreviations

       OP flags are either public or private.  The public flags alter the behavior of each opcode in consis-tent consistent
       tent ways, and are represented by 0 or more single characters.

           v      OPf_WANT_VOID    Want nothing (void context)
           s      OPf_WANT_SCALAR  Want single value (scalar context)
           l      OPf_WANT_LIST    Want list of any length (list context)
                                   Want is unknown
           K      OPf_KIDS         There is a firstborn child.
           P      OPf_PARENS       This operator was parenthesized.
                                    (Or block needs explicit scope entry.)
           R      OPf_REF          Certified reference.
                                    (Return container, not containee).
           M      OPf_MOD          Will modify (lvalue).
           S      OPf_STACKED      Some arg is arriving on the stack.
           *      OPf_SPECIAL      Do something weird for this op (see op.h)

       Private flags, if any are set for an opcode, are displayed after a '/'

           8  <@> leave[1 ref] vKP/REFC ->(end)
           7     <2> sassign vKS/2 ->8

       They're opcode specific, and occur less often than the public ones, so they're represented by short
       mnemonics instead of single-chars; see op.h for gory details, or try this quick 2-liner:

         $> perl -MB::Concise -de 1
         DB<1> |x \%B::Concise::priv

FORMATTING SPECIFICATIONS
       For each line-style ('concise', 'terse', 'linenoise', etc.) there are 3 format-specs which control
       how OPs are rendered.

       The first is the 'default' format, which is used in both basic and exec modes to print all opcodes.
       The 2nd, goto-format, is used in exec mode when branches are encountered.  They're not real opcodes,
       and are inserted to look like a closing curly brace.  The tree-format is tree specific.

       When a line is rendered, the correct format-spec is copied and scanned for the following items; data
       is substituted in, and other manipulations like basic indenting are done, for each opcode rendered.

       There are 3 kinds of items that may be populated; special patterns, #vars, and literal text, which is
       copied verbatim.  (Yes, it's a set of s///g steps.)

       Special Patterns

       These items are the primitives used to perform indenting, and to select text from amongst alterna-tives. alternatives.
       tives.

       (x(exec_text;basic_text)x)
           Generates exec_text in exec mode, or basic_text in basic mode.

       (*(text)*)
           Generates one copy of text for each indentation level.

       (*(text1;text2)*)
           Generates one fewer copies of text1 than the indentation level, followed by one copy of text2 if
           the indentation level is more than 0.

       (?(text1#varText2)?)
           If the value of var is true (not empty or zero), generates the value of var surrounded by text1
           and Text2, otherwise nothing.

       ~   Any number of tildes and surrounding whitespace will be collapsed to a single space.

       # Variables

       These #vars represent opcode properties that you may want as part of your rendering.  The '#' is
       intended as a private sigil; a #var's value is interpolated into the style-line, much like "read
       $this".

       These vars take 3 forms:

       #var
           A property named 'var' is assumed to exist for the opcodes, and is interpolated into the render-ing. rendering.
           ing.

       #varN
           Generates the value of var, left justified to fill N spaces.  Note that this means while you can
           have properties 'foo' and 'foo2', you cannot render 'foo2', but you could with 'foo2a'.  You
           would be wise not to rely on this behavior going forward ;-)

       #Var
           This ucfirst form of #var generates a tag-value form of itself for display; it converts '#Var'
           into a 'Var => #var' style, which is then handled as described above.  (Imp-note: #Vars cannot be
           used for conditional-fills, because the => #var transform is done after the check for #Var's
           value).

       The following variables are 'defined' by B::Concise; when they are used in a style, their respective
       values are plugged into the rendering of each opcode.

       Only some of these are used by the standard styles, the others are provided for you to delve into
       optree mechanics, should you wish to add a new style (see "add_style" below) that uses them.  You can
       also add new ones using "add_callback".

       #addr
           The address of the OP, in hexadecimal.

       #arg
           The OP-specific information of the OP (such as the SV for an SVOP, the non-local exit pointers
           for a LOOP, etc.) enclosed in parentheses.

       #class
           The B-determined class of the OP, in all caps.

       #classsym
           A single symbol abbreviating the class of the OP.

       #coplabel
           The label of the statement or block the OP is the start of, if any.

       #exname
           The name of the OP, or 'ex-foo' if the OP is a null that used to be a foo.

       #extarg
           The target of the OP, or nothing for a nulled OP.

       #firstaddr
           The address of the OP's first child, in hexadecimal.

       #flags
           The OP's flags, abbreviated as a series of symbols.

       #flagval
           The numeric value of the OP's flags.

       #hyphseq
           The sequence number of the OP, or a hyphen if it doesn't have one.

       #label
           'NEXT', 'LAST', or 'REDO' if the OP is a target of one of those in exec mode, or empty otherwise.

       #lastaddr
           The address of the OP's last child, in hexadecimal.

       #name
           The OP's name.

       #NAME
           The OP's name, in all caps.

       #next
           The sequence number of the OP's next OP.

       #nextaddr
           The address of the OP's next OP, in hexadecimal.

       #noise
           A one- or two-character abbreviation for the OP's name.

       #private
           The OP's private flags, rendered with abbreviated names if possible.

       #privval
           The numeric value of the OP's private flags.

       #seq
           The sequence number of the OP. Note that this is a sequence number generated by B::Concise.

       #seqnum
           5.8.x and earlier only. 5.9 and later do not provide this.

           The real sequence number of the OP, as a regular number and not adjusted to be relative to the
           start of the real program. (This will generally be a fairly large number because all of B::Con-cise B::Concise
           cise is compiled before your program is).

       #opt
           Whether or not the op has been optimised by the peephole optimiser.

           Only available in 5.9 and later.

       #static
           Whether or not the op is statically defined.  This flag is used by the B::C compiler backend and
           indicates that the op should not be freed.

           Only available in 5.9 and later.

       #sibaddr
           The address of the OP's next youngest sibling, in hexadecimal.

       #svaddr
           The address of the OP's SV, if it has an SV, in hexadecimal.

       #svclass
           The class of the OP's SV, if it has one, in all caps (e.g., 'IV').

       #svval
           The value of the OP's SV, if it has one, in a short human-readable format.

       #targ
           The numeric value of the OP's targ.

       #targarg
           The name of the variable the OP's targ refers to, if any, otherwise the letter t followed by the
           OP's targ in decimal.

       #targarglife
           Same as #targarg, but followed by the COP sequence numbers that delimit the variable's lifetime
           (or 'end' for a variable in an open scope) for a variable.

       #typenum
           The numeric value of the OP's type, in decimal.

Using B::Concise outside of the O framework
       The common (and original) usage of B::Concise was for command-line renderings of simple code, as
       given in EXAMPLE.  But you can also use B::Concise from your code, and call compile() directly, and
       repeatedly.  By doing so, you can avoid the compile-time only operation of O.pm, and even use the
       debugger to step through B::Concise::compile() itself.

       Once you're doing this, you may alter Concise output by adding new rendering styles, and by option-ally optionally
       ally adding callback routines which populate new variables, if such were referenced from those (just
       added) styles.

       Example: Altering Concise Renderings

           use B::Concise qw(set_style add_callback);
           add_style($yourStyleName => $defaultfmt, $gotofmt, $treefmt);
           add_callback
             ( sub {
                   my ($h, $op, $format, $level, $stylename) = @_;
                   $h->{variable} = some_func($op);
               });
           $walker = B::Concise::compile(@options,@subnames,@subrefs);
           $walker->();

       set_style()

       set_style accepts 3 arguments, and updates the three format-specs comprising a line-style
       (basic-exec, goto, tree).  It has one minor drawback though; it doesn't register the style under a
       new name.  This can become an issue if you render more than once and switch styles.  Thus you may
       prefer to use add_style() and/or set_style_standard() instead.

       set_style_standard($name)

       This restores one of the standard line-styles: "terse", "concise", "linenoise", "debug", "env", into
       effect.  It also accepts style names previously defined with add_style().

       add_style()

       This subroutine accepts a new style name and three style arguments as above, and creates, registers,
       and selects the newly named style.  It is an error to re-add a style; call set_style_standard() to
       switch between several styles.

       add_callback()

       If your newly minted styles refer to any new #variables, you'll need to define a callback subroutine
       that will populate (or modify) those variables.  They are then available for use in the style you've
       chosen.

       The callbacks are called for each opcode visited by Concise, in the same order as they are added.
       Each subroutine is passed five parameters.

         1. A hashref, containing the variable names and values which are
            populated into the report-line for the op
         2. the op, as a B<B::OP> object
         3. a reference to the format string
         4. the formatting (indent) level
         5. the selected stylename

       To define your own variables, simply add them to the hash, or change existing values if you need to.
       The level and format are passed in as references to scalars, but it is unlikely that they will need
       to be changed or even used.

       Running B::Concise::compile()

       compile accepts options as described above in "OPTIONS", and arguments, which are either coderefs, or
       subroutine names.

       It constructs and returns a $treewalker coderef, which when invoked, traverses, or walks, and renders
       the optrees of the given arguments to STDOUT.  You can reuse this, and can change the rendering style
       used each time; thereafter the coderef renders in the new style.

       walk_output lets you change the print destination from STDOUT to another open filehandle, or into a
       string passed as a ref (unless you've built perl with -Uuseperlio).

           my $walker = B::Concise::compile('-terse','aFuncName', \&aSubRef);  # 1
           walk_output(\my $buf);
           $walker->();                        # 1 renders -terse
           set_style_standard('concise');      # 2
           $walker->();                        # 2 renders -concise
           $walker->(@new);                    # 3 renders whatever
           print "3 different renderings: terse, concise, and @new: $buf\n";

       When $walker is called, it traverses the subroutines supplied when it was created, and renders them
       using the current style.  You can change the style afterwards in several different ways:

         1. call C<compile>, altering style or mode/order
         2. call C<set_style_standard>
         3. call $walker, passing @new options

       Passing new options to the $walker is the easiest way to change amongst any pre-defined styles (the
       ones you add are automatically recognized as options), and is the only way to alter rendering order
       without calling compile again.  Note however that rendering state is still shared amongst multiple
       $walker objects, so they must still be used in a coordinated manner.

       B::Concise::reset_sequence()

       This function (not exported) lets you reset the sequence numbers (note that they're numbered arbi-trarily, arbitrarily,
       trarily, their goal being to be human readable).  Its purpose is mostly to support testing, i.e. to
       compare the concise output from two identical anonymous subroutines (but different instances).  With-out Without
       out the reset, B::Concise, seeing that they're separate optrees, generates different sequence numbers
       in the output.

       Errors

       Errors in rendering (non-existent function-name, non-existent coderef) are written to the STDOUT, or
       wherever you've set it via walk_output().

       Errors using the various *style* calls, and bad args to walk_output(), result in die().  Use an eval
       if you wish to catch these errors and continue processing.

AUTHOR
       Stephen McCamant, <smcc@CSUA.Berkeley.EDU>.



perl v5.8.8                                      2001-09-21                                  B::Concise(3pm)

Did this document help you?
Yes: Tell us what works for you.
It’s good, but: Report typos, inaccuracies, and so forth.
It wasn’t helpful: Tell us what would have helped.