CSQRT(3) BSD Library Functions Manual CSQRT(3)
NAME
csqrt -- complex square root function
SYNOPSIS
#include <complex.h>
double complex
csqrt(double complex z);
long double complex
csqrtl(long double complex z);
float complex
csqrtf(float complex z);
DESCRIPTION
csqrt(z) computes the square root of the complex floating-point number z, with a branch cut on the neg-ative negative
ative real axis. The result is in the right half-plane, including the imaginary axis. For all complex
z, csqrt(conj(z)) = conj(csqrt(z)).
SPECIAL VALUES
The conjugate symmetry of csqrt() is used to abbreviate the specification of special values.
csqrt(+-0 + 0i) returns +0 + 0i.
csqrt(x + inf i) returns inf + inf i for all x (including NaN).
csqrt(x + NaN i) returns NaN + NaN i.
csqrt(-inf + yi) returns 0 + inf i for any positively-signed finite y.
csqrt(inf + yi) returns inf + 0i for any positively-signed finite y.
csqrt(-inf + NaN i) returns NaN + inf i.
csqrt(inf + NaN i) returns inf + NaN i.
csqrt(NaN + yi) returns NaN + NaN i.
csqrt(NaN + NaN i) returns NaN + NaN i.
NOTES
If z is in the upper half-plane, then csqrt(z) is in the upper-right quadrant of the complex plane. If
z is in the lower half-plane, then csqrt(z) is in the lower-right quadrant of the complex plane.
SEE ALSO
complex(3)
STANDARDS
The csqrt() function conforms to ISO/IEC 9899:1999(E).
4th Berkeley Distribution October 10, 2006 4th Berkeley Distribution
|