< Previous PageNext Page > Hide TOC

Preparing Vector-Based Code

This chapter is relevant only for those developers who want to start writing vector-based code or whose applications already directly use the AltiVec extension to the PowerPC instruction set. AltiVec instructions, because they are processor specific, must be replaced on Intel-based Macintosh computers. You can choose from these two options:

In this section:

Accelerate Framework
Rewriting AltiVec Instructions
See Also


Accelerate Framework

The Accelerate framework, introduced in Mac OS X v10.3 and expanded in v10.4, is a set of high-performance vector-accelerated libraries. You don’t need to be concerned with the architecture of the target machine because the routines in this framework abstract the low-level details. The system automatically invokes the appropriate instruction set for the architecture that your code runs on.

This framework contains the following libraries:

Rewriting AltiVec Instructions

Most of the tasks required to vectorize for AltiVec—restructuring data structures, designing parallel algorithms, eliminating branches, and so forth— are the same as those you’d need to perform for the Intel architecture. If you already have AltiVec code, you’ve already completed the fundamental vectorization work needed to rewrite your application for the Intel architecture. In many cases the translation process will be smooth, involving direct or nearly direct substitution of AltiVec intrinsics with Intel equivalents.

The MMX, SSE, SSE2, and SSE3 extensions provide analogous functionality to AltiVec. Like the AltiVec unit, these extensions are fixed-sized SIMD (Single Instruction Multiple Data) vector units, capable of a high degree of parallelism. Just as for AltiVec, code that is written to use the Intel ISA typically performs many times faster than scalar code.

Before you start rewriting AltiVec instructions for the Intel instruction set architecture, read AltiVec/SSE Migration Guide. It outlines the key differences between architectures in terms of vector-based programming, gives an overview of the SIMD extensions on x86, lists what you need to do to build your code, and provides an in-depth discussion on alignment and other relevant issues.

See Also

The following resources are relevant for rewriting AltiVec instructions for the Intel architecture:



< Previous PageNext Page > Hide TOC


© 2005, 2009 Apple Inc. All Rights Reserved. (Last updated: 2009-02-04)


Did this document help you?
Yes: Tell us what works for you.
It’s good, but: Report typos, inaccuracies, and so forth.
It wasn’t helpful: Tell us what would have helped.